共享选股模型之四:国证2000增强线性选股评分模型

用户头像wuh***zc
2025-02-08 发布

回顾:如何搭配因子组合 的策略心得,并总结出一条相应的参考规律:

线性选股评分模型 = 成长因子(权重系数:建议20-40%) + 经营质量因子(权重系数:建议20-40%) + 估值因子(包括市值因子)(权重系数:建议20-40%)

其中,估值因子必须要考虑,主要是考虑到逆向操作的行为,相等于它可以快速指导我们根据市场变化进行低买高卖操作,而成长因子和经营质量因子更多是根据每一个最新财报公布数据告诉我们那些股票样本空间更容易实现被买入或持仓,对低买高卖的操作几乎没有影响,并不是直观反应的指标。

上三次共享了沪深300、中证500和中证1000指数增强的选股模型,这一次,我再分享一下国证2000指数增强的选股模型,国证2000的选股模型过去5年多的年化收益率明显比沪深300、中证500和中证1000的指数增强的高得多,并且换手率也增加到每日换手7%左右。

以下是今天特意尝试共享部分有效的多因子线性选股评分模型(不限于国证2000指数样本空间),用于与各位量化爱好者共同参考学习:

策略实现的过程的步骤如下:

1、国证2000成分股作为股票池;

2、剔除ST、停牌的股票;

3、9因子的线性模型构建,参考模型如下:

**第一组因子评分模型:**point = ['inc_total_revenue_year_on_year', 'subtotal_operate_cash_inflow_yoy', 'inc_net_profit_to_shareholders_year_on_year_yoy', '1/pb_ratio', 'Long_term_capital_liability_ratio', 'operating_profit/total_current_assets', 'total_profit/market_cap', 'fixed_assets/market_cap', '1/market_cap', '1/circulating_market_cap'];

**第二组因子评分模型:**point = ['inc_operation_profit_year_on_year', 'total_liability_yoy', 'expense_to_total_revenue', 'ocf_to_revenue', 'Long_term_capital_liability_ratio', 'net_profit/market_cap', 'total_assets/market_cap', 'dividend_interest_payment/market_cap', '1/market_cap', '1/circulating_market_cap'];

**第三组因子评分模型:**point = ['inc_total_revenue_year_on_year', '1/pb_ratio', 'net_profit/total_assets', 'dividend_interest_payment/net_profit', 'total_assets_2_trading_assets', 'roa', 'total_assets/market_cap', '1/market_cap', '1/market_cap', '1/circulating_market_cap'];

**第四组因子评分模型:**point = ['inc_operation_profit_year_on_year', 'net_operate_cash_flow/total_assets', 'cash_equivalents_2_total_liability', 'operating_profit/total_assets', 'total_assets/market_cap', 'subtotal_operate_cash_inflow/market_cap', 'goods_sale_and_service_render_cash/market_cap', '1/market_cap', '1/market_cap', '1/circulating_market_cap'];

**第五组因子评分模型:**point = ['dividend_interest_payment_yoy', 'inc_net_profit_year_on_year_yoy', 'gross_profit_margin_yoy', 'net_profit_margin', 'Long_term_capital_liability_ratio', 'net_profit/market_cap', 'total_assets/market_cap', '1/market_cap', '1/market_cap', '1/circulating_market_cap'];

**第六组因子评分模型:**point = ['total_liability_yoy', 'gross_profit_margin_yoy', 'PEG', 'Long_term_capital_liability_ratio', 'total_profit/market_cap', 'total_assets/market_cap', 'total_sheet_owner_equities/market_cap', '1/market_cap', '1/market_cap', '1/circulating_market_cap'];

**第七组因子评分模型:**point = ['inc_net_profit_to_shareholders_year_on_year', 'total_liability_yoy', 'net_finance_cash_flow_yoy', 'operation_profit_to_total_revenue', 'Long_term_capital_liability_ratio', 'total_profit/market_cap', 'total_sheet_owner_equities/market_cap', '1/market_cap', '1/market_cap', '1/circulating_market_cap'];

**第八组因子评分模型:**point = ['inc_total_revenue_year_on_year', 'retained_profit_yoy', 'net_profit_margin', 'Long_term_capital_liability_ratio', 'EBIT/market_cap', 'total_sheet_owner_equities/market_cap', '1/market_cap', '1/market_cap', '1/market_cap', '1/circulating_market_cap'];

**第九组因子评分模型:**point = ['inc_operation_profit_annual', 'inc_net_profit_to_shareholders_year_on_year_yoy', '1/pb_ratio', 'net_operate_cash_flow/goods_sale_and_service_render_cash', 'Long_term_capital_liability_ratio', 'operating_profit/total_current_assets', 'total_profit/market_cap', '1/market_cap', '1/market_cap', '1/circulating_market_cap'];

**第十组因子评分模型:**point = ['inc_revenue_year_on_year', 'subtotal_operate_cash_inflow_yoy', 'gross_profit_margin_yoy', 'Long_term_capital_liability_ratio', 'roa', 'total_assets/market_cap', 'fixed_assets/market_cap', '1/capitalization', '1/market_cap', '1/circulating_market_cap'];

今天就分享十组有效的因子评分选股模型,其中评分过程都是进行等权排序评分法实现;

比如第一组因子模型,我们如何使用呢?我们先看看因子组合的显示格式:['inc_revenue_year_on_year', 'total_owner_equities/total_liability', 'net_operate_cash_flow/capitalization', '1/pb_ratio_yoy'],我们会发现因子组的具体结构如下:point = [factor1,...,factorM]。因此,我们可以很明确的看到,因子组模型是对factor1,....,factorM的单独子因子组进行等权排序评分,这样我们可以得到一个最终的多因子线性选股评分,也就是point,那么我们对其进行由大到小排序,买入前N只股票即可;

4、每天开盘前进行评分,买入前20只股票作为持仓,均等持仓,手续费和印花税按交易所标准设置;

5、回测时间段为2014年10月-2024年9月;

6、以上十组因子评分模型,年化收益率都超过30%。

10组国证2000多因子选股模型:年化收益率、最大回撤和年化收益回撤比

特别说明:以上因子数据皆为聚宽量化平台的,可以再聚宽平台重现

原文链接:共享选股模型之四:国证2000增强线性选股评分模型Link

更多相关的量化策略文章,请在知乎搜寻精选文章链接:
1、量化研究徐中行:量化策略择时效应:市值越小,择时越好
2、量化研究徐中行:策略开发思想:股票价格是非稳态系统? 如何通过逐步提升系统稳态性而升华投资方案?
3、量化研究徐中行:量化投资方案:从数据开始,到投资方案
4、量化研究徐中行:多因子套利方案:IF、IC跨品种套利
5、量化研究徐中行:多因子线性选股模型:如何搭配因子???
6、盘中量化模型测试直播地址https://www.zhihu.com/theater/142527

原文章的知乎公众号:量化研究徐中行

评论

需要帮助?

试试AI小助手吧