问财量化选股策略逻辑
选股逻辑为振幅大于1、昨天出现在龙虎榜上、周线出现红柱。此策略选股的关键在于选择波动较大、市场情绪好、趋势向上的股票。
选股逻辑分析
- 振幅大于1表明短期内波动较大,容易出现投资机会;
- 昨天出现在龙虎榜上意味着市场情绪高涨,有较强的短期表现;
- 周线红柱代表股票当前处于一定上涨趋势中。
有何风险?
- 振幅较大的股票波动性较高,风险也相对较高;
- 龙虎榜数据不能完全代表股票的总体表现,风险仍需注意;
- 周线出现个别红柱不能直接代表股票即将上涨;
- 若市场走势不稳定,股票可能会出现大幅波动,带来较高风险。
如何优化?
- 结合其它技术指标,如RSI等,综合分析是否具有进一步的投资价值;
- 加入财务估值等指标,以更全面的方式来选取股票;
- 综合各种数据源,如资金流向、板块情况等,以更全面的数据来筛选股票;
- 可以通过加入行业约束来进一步筛选股票,以避免选择风险高的行业。
最终的选股逻辑
选股逻辑为振幅大于1、昨天出现在龙虎榜上、周线出现红柱。此策略选股的关键在于选择波动较大、市场情绪好、趋势向上的股票。
同花顺指标公式代码参考
# 计算振幅
high = REF(HIGH, 1)
low = REF(LOW, 1)
close = REF(CLOSE, 1)
amplitude = 100 * (high - low) / close
picks_amplitude = IF(amplitude > 1, 1, 0)
# 判断昨天是否出现在龙虎榜上
lhb_data = LHB
yesterday_lhb = REF(lhb_data['buy'] + lhb_data['sell'], 1)
picks_lhb = IF(yesterday_lhb > 0, 1, 0)
# 判断周线是否出现红柱
ma5 = MA(CLOSE, 5)
ma10 = MA(CLOSE, 10)
ma20 = MA(CLOSE, 20)
ma60 = MA(CLOSE, 60)
wma5 = MA(CLOSE, 5, WEIGHT)
wma10 = MA(CLOSE, 10, WEIGHT)
wma20 = MA(CLOSE, 20, WEIGHT)
wma60 = MA(CLOSE, 60, WEIGHT)
week = ISLASTBARWEEK()
red_bar = (week AND CLOSE > OPEN AND ma5 >= ma10 AND ma10 >= ma20 AND ma20 >= ma60 AND wma5 >= wma10 AND wma10 >= wma20 AND wma20 >= wma60)
picks_red = IF(red_bar, 1, 0)
# 选取符合条件的股票
picks = picks_amplitude * picks_lhb * picks_red
picks_final = SortBy(picks, CLOSE, descending=True)
# 输出选股结果
WriteIf(picks_final, picks_final, 0)
python代码参考
# 计算振幅
df['amplitude'] = 100 * (df['high'] - df['low']) / df['close']
picks_amplitude = set(df[df['amplitude'] > 1]['ts_code'].tolist())
# 判断昨天是否出现在龙虎榜上
lhb_data = pro.top_list(trade_date='20211008', fields='ts_code')
yesterday_lhb = set(lhb_data['ts_code'].tolist())
# 判断周线是否出现红柱
df['ma5'] = talib.MA(df['close'], timeperiod=5)
df['ma10'] = talib.MA(df['close'], timeperiod=10)
df['ma20'] = talib.MA(df['close'], timeperiod=20)
df['ma60'] = talib.MA(df['close'], timeperiod=60)
df['wma5'] = talib.WMA(df['close'], timeperiod=5)
df['wma10'] = talib.WMA(df['close'], timeperiod=10)
df['wma20'] = talib.WMA(df['close'], timeperiod=20)
df['wma60'] = talib.WMA(df['close'], timeperiod=60)
df = df.iloc[-5:, :]
red_bar = (df['close'].iloc[-1] > df['open'].iloc[-1]) & (df['ma5'].iloc[-1] >= df['ma10'].iloc[-1]) & (df['ma10'].iloc[-1] >= df['ma20'].iloc[-1]) & (df['ma20'].iloc[-1] >= df['ma60'].iloc[-1]) & (df['wma5'].iloc[-1] >= df['wma10'].iloc[-1]) & (df['wma10'].iloc[-1] >= df['wma20'].iloc[-1]) & (df['wma20'].iloc[-1] >= df['wma60'].iloc[-1])
picks_red = set(df[df.apply(lambda x: red_bar, axis=1)]['ts_code'].tolist())
# 选取符合条件的股票
picks = set(picks_amplitude) & set(yesterday_lhb) & set(picks_red)
# 输出选股结果
print(picks)
## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
select_sentence = '市值小于100亿' #选股语句。
模板如何使用?
点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
## 如果有任何问题请添加 下方的二维码进群提问。
