问财量化选股策略逻辑
选取振幅大于1,前25天至少有一天涨停,且属于食品饮料行业中饮料及酒类进出口相关企业的股票进入待投资池。
选股逻辑分析
- 振幅大于1表明该股票波动性较大,有较大概率出现较高的涨幅;
- 前25天至少有一天涨停,代表该股票有望超额表现;
- 饮料与酒类进出口是食品饮料行业中的一个细分领域,对于该领域的宏观政策变化具有较大敏感度,响应快,因此有望获得超额收益。
有何风险?
- 政策风险较大,一些政策的变化有可能导致选出的股票在短时间内出现较大波动;
- 食品饮料行业周期波动较大,需要注意行业风险和市场波动的风险。
如何优化?
- 可以考虑加入其他相关的指标,如相关公司的财务指标等,提高选股的综合性分析能力;
- 选择特定行业或是特定细分领域,形成基于特定领域的选股逻辑,从而获得更好的投资收益。
最终的选股逻辑
选取振幅大于1,前25天至少有一天涨停,且属于食品饮料行业中饮料及酒类进出口相关企业的股票进入待投资池。
同花顺指标公式代码参考
//振幅大于1
COND1:=(HIGH-LOW)/LOW>0.01;
//涨停,只选取前25天,这里举例取18
COND2:=REF(MAX(HIGH,1),1)/REF(CLOSE,1)>1.097 AND (HIGH=LOW) AND (CLOSE-REF(CLOSE,1))/REF(CLOSE,1)<0.009 AND (BARSSINCE(CLOSE=REF(MAX(HIGH,1),1))/COUNT>COUNT-18);
//属于食品饮料行业中饮料及酒类进出口相关企业
COND3:=SELECTINDUSTRY('食品饮料')AND (SELECTINDUSTRY('酒') OR SELECTINDUSTRY('饮料') OR SELECTINDUSTRY('进出口'));
//综合条件
CONDITION:=COND1 AND COND2 AND COND3;
SIGNAL:=CHECKCOND(CONDITION,1);
Python代码参考
import pandas as pd
import akshare as ak
from talib import abstract
def get_trade_data(stock_code):
stock_history_df = ak.stock_zh_a_daily(symbol=stock_code, adjust="hfq")
stock_history_df.rename(columns={"交易日期":"date","开盘价":"open","最高价":"high","最低价":"low","收盘价":"close","成交量":"volume","成交额":"amount"}, inplace=True)
stock_history_df.sort_values("date", ascending=True, inplace=True)
stock_history_df['pct_chg'] = stock_history_df['close'].pct_change() * 100
stock_history_df['net_volume'] = stock_history_df['close'] * stock_history_df['volume'] * stock_history_df['pct_chg'] / 100 /10000
macd, signal, hist = abstract.MACD(stock_history_df['close'], fastperiod=12, slowperiod=26, signalperiod=9)
stock_history_df['dif'] = macd
stock_history_df['dea'] = signal
# 振幅
cond1 = (stock_history_df['high'] - stock_history_df['low']) / stock_history_df['low'] > 0.01
# 涨停
cond2 = (stock_history_df['high'] / stock_history_df['close'].shift(1) > 1.097) & (stock_history_df['high'] == stock_history_df['low']) & (stock_history_df['close'] / stock_history_df['close'].shift(1) - 1 < 0.009) & (stock_history_df['close'] == stock_history_df['high'].shift(1))
cond2 = cond2.rolling(window=18).sum() > 0
# 食品饮料行业中饮料及酒类进出口相关企业
cond3 = (stock_code in ak.stock_sector_cons(sector="食品饮料").iloc[:, 0].tolist()) & ((stock_code in ak.stock_sector_cons(sector="饮料").iloc[:, 0].tolist()) | (stock_code in ak.stock_sector_cons(sector="酒").iloc[:, 0].tolist()) | (stock_code in ak.stock_sector_cons(sector="进出口").iloc[:, 0].tolist()))
# 综合条件
basic_cond = cond1 & cond2 & cond3
df = stock_history_df[basic_cond].reset_index(drop=True)
return df
def select(df):
return df.sort_values('net_volume', ascending=False)
## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
select_sentence = '市值小于100亿' #选股语句。
模板如何使用?
点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
## 如果有任何问题请添加 下方的二维码进群提问。
