问财量化选股策略逻辑
选取振幅大于1,前25天至少有一天涨停,且涨跌幅与超大单净量的乘积大于1的股票进入待投资池。
选股逻辑分析
- 振幅大于1表明该股票波动性较大,有较大概率出现较高的涨幅;
- 前25天至少有一天涨停,代表该股票具备一定的走势特征;
- 涨跌幅与超大单净量的乘积大于1说明该股票表现良好,并且有一定的资金存在追涨;
- 选股策略对不同类型的走势和市场行情的适应性较差。
有何风险?
- 公司经营状况不佳,净利润同比下降,导致选出的股票出现较大波动;
- 股市行情不佳,导致选出的股票涨幅不如预期;
- 高波动性的股票波动可能过于强烈,存在较大的风险。
如何优化?
- 可以补充其他的技术指标和基本面分析,增强选股的稳定性和可靠性;
- 适时对选股逻辑进行调整和优化,同步更新投资组合。
最终的选股逻辑
选取振幅大于1,前25天至少有一天涨停,且涨跌幅与超大单净量的乘积大于1的股票进入待投资池。
同花顺指标公式代码参考
// 振幅大于1
COND1:=(HIGH-LOW)/LOW>0.01;
// 前25天至少有1天涨停
COND2:=REF(MAX(HIGH,1),1)/REF(CLOSE,1)>1.097 AND (HIGH=LOW) AND (CLOSE-REF(CLOSE,1))/REF(CLOSE,1)<0.009 AND (BARSSINCE(CLOSE=REF(MAX(HIGH,1),1))/COUNT>COUNT-25);
// 超大单净量
COND3:=VAC>0;
COND4:=ABS(AMO)<REF(AMO,1)*0.5;
COND5:=COND3 AND COND4;
// 涨跌幅×超大单净量
RATE:=AMOUNT/100000000*IF(CLOSE>=OPEN,(CLOSE-OPEN)/CLOSE,(OPEN-CLOSE)/OPEN)*IF(VOL>1000000,1,0);
C:=RATE*COND5;
// 综合条件
CONDITION:=COND1 AND COND2 AND C>1;
SIGNAL:=CHECKCOND(CONDITION,1);
Python代码参考
import pandas as pd
import akshare as ak
def get_trade_data(stock_code):
stock_history_df = ak.stock_zh_a_daily(symbol=stock_code, adjust="hfq")
stock_history_df.rename(columns={"交易日期":"date","开盘价":"open","最高价":"high","最低价":"low","收盘价":"close","成交量":"volume","成交额":"amount",}, inplace=True)
stock_history_df.sort_values("date", ascending=True, inplace=True)
stock_history_df['pct_chg'] = stock_history_df['close'].pct_change() * 100
# 振幅
cond1 = (stock_history_df['high'] - stock_history_df['low']) / stock_history_df['low'] > 0.01
# 涨停
cond2 = (stock_history_df['high'] / stock_history_df['close'].shift(1) > 1.097) & (stock_history_df['high'] == stock_history_df['low']) & (stock_history_df['close'] / stock_history_df['close'].shift(1) - 1 < 0.009) & (stock_history_df['close'] == stock_history_df['high'].shift(1))
cond2 = cond2.rolling(window=25).sum() > 0
# 超大单净量
cond3 = stock_history_df['vol_amplitude'] > 1000000
cond4 = abs(stock_history_df['amount']) < 0.5 * stock_history_df['amount'].shift(1)
cond5 = cond3 & cond4
# 涨跌幅×超大单净量
rate = (stock_history_df['amount'] / 100000000) * stock_history_df.apply(lambda x: (x['close']-x['open'])/x['close'] if x['close']>=x['open'] else (x['open']-x['close'])/x['open'], axis=1) * cond3.astype(int)
c = rate * cond5.astype(int)
# 综合条件
basic_cond = cond1 & cond2 & (c>1)
df = stock_history_df.loc[basic_cond].reset_index(drop=True)
return df
def select(df):
return df
## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
select_sentence = '市值小于100亿' #选股语句。
模板如何使用?
点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
## 如果有任何问题请添加 下方的二维码进群提问。
