(supermind)振幅大于1、前25天有涨停、dea上涨_

用户头像神盾局量子研究部
2023-08-21 发布

问财量化选股策略逻辑

选取振幅大于1,前25天至少有一天涨停,DEA向上的股票进入待投资池。

选股逻辑分析

  1. 振幅大于1表明该股票波动性较大,有较大概率出现较高的涨幅;
  2. 前25天至少有一天涨停,代表该股票有望超额表现;
  3. DEA线是MACD技术指标中的一个中长期趋势线,DEA向上代表股票所处的中长期趋势有望持续向好。

有何风险?

  1. DEA线受市场行情影响较大,在市场震荡时,选出的股票数量可能会减少;
  2. 每个时期选择的DEA线指标周期可能会不同,因此需要注意指标选择的合理性。

如何优化?

  1. 可以考虑加入其他相关的指标,如K线形态、均线金叉等指标,提高选股的综合性分析;
  2. 对DEA选择周期要进行合理选择,避免因DEA选择过短而导致选出的股票波动性过大或是DEA选择过长而过度平滑化。

最终的选股逻辑

选取振幅大于1,前25天至少有一天涨停,DEA向上的股票进入待投资池。

同花顺指标公式代码参考

//振幅大于1
COND1:=(HIGH-LOW)/LOW>0.01;
//涨停,只选取前25天,这里举例取18
COND2:=REF(MAX(HIGH,1),1)/REF(CLOSE,1)>1.097 AND (HIGH=LOW) AND (CLOSE-REF(CLOSE,1))/REF(CLOSE,1)<0.009 AND (BARSSINCE(CLOSE=REF(MAX(HIGH,1),1))/COUNT>COUNT-18);
//MACD指标
DIF:=EMA(CLOSE,12)-EMA(CLOSE,26);
DEA:=EMA(DIF,9);
//DEA向上
COND3:=DEA>REF(DEA,1);
//综合条件
CONDITION:=COND1 AND COND2 AND COND3;
SIGNAL:=CHECKCOND(CONDITION,1);

Python代码参考

import pandas as pd
import akshare as ak
from talib import abstract

def get_trade_data(stock_code):
    stock_history_df = ak.stock_zh_a_daily(symbol=stock_code, adjust="hfq")
    stock_history_df.rename(columns={"交易日期":"date","开盘价":"open","最高价":"high","最低价":"low","收盘价":"close","成交量":"volume","成交额":"amount"}, inplace=True)
    stock_history_df.sort_values("date", ascending=True, inplace=True)
    stock_history_df['pct_chg'] = stock_history_df['close'].pct_change() * 100
    stock_history_df['net_volume'] = stock_history_df['close'] * stock_history_df['volume'] * stock_history_df['pct_chg'] / 100 /10000
    macd, signal, hist = abstract.MACD(stock_history_df['close'], fastperiod=12, slowperiod=26, signalperiod=9)
    stock_history_df['dif'] = macd
    stock_history_df['dea'] = signal
    # 振幅
    cond1 = (stock_history_df['high'] - stock_history_df['low']) / stock_history_df['low'] > 0.01
    # 涨停
    cond2 = (stock_history_df['high'] / stock_history_df['close'].shift(1) > 1.097) & (stock_history_df['high'] == stock_history_df['low']) & (stock_history_df['close'] / stock_history_df['close'].shift(1) - 1 < 0.009) & (stock_history_df['close'] == stock_history_df['high'].shift(1))
    cond2 = cond2.rolling(window=18).sum() > 0
    # DEA向上
    cond3 = stock_history_df['dea'] > stock_history_df['dea'].shift(1)
    # 综合条件
    basic_cond = cond1 & cond2 & cond3
    df = stock_history_df[basic_cond].reset_index(drop=True)
    return df

def select(df):
    return df.sort_values('net_volume', ascending=False)
    ## 如何进行量化策略实盘?
    请把您优化好的选股语句放入文章最下面模板的选股语句中即可。

    select_sentence = '市值小于100亿' #选股语句。

    模板如何使用?

    点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。


    ## 如果有任何问题请添加 下方的二维码进群提问。
    ![94c5cde12014f99e262a302741275d05.png](http://u.thsi.cn/imgsrc/pefile/94c5cde12014f99e262a302741275d05.png)
收益&风险
源码

评论