问财量化选股策略逻辑
选取振幅大于1,前25天至少有一天涨停,2021年营收/2018年营收大于1.1的股票进入待投资池。
选股逻辑分析
- 振幅大于1表明该股票波动性较大,有较大概率出现较高的涨幅;
- 前25天至少有一天涨停,代表该股票有望超额表现;
- 营收比较是一个非常重要的基本面指标,营收持续增长代表企业处于强劲发展态势中,为长期投资提供了较好的支撑。
有何风险?
- 可能会忽略其他重要的基本面和技术指标,过度依赖营收指标进行选股;
- 针对营收持续增长的股票容易虚高,风险较大。
如何优化?
- 在营收比较的基础上,结合其他基本面、技术面指标进行综合分析,形成多因素选股策略;
- 营收增长率过快也会增加风险,可以考虑结合企业盈利等指标进行综合分析筛选;
- 在营收比较基础上,可以结合其他基本面指标,例如净利润增速、毛利润率等进行多维度筛选,避免营收因素单一导致的偏差。
最终的选股逻辑
选取振幅大于1,前25天至少有一天涨停,2021年营收/2018年营收大于1.1的股票进入待投资池。
同花顺指标公式代码参考
//振幅大于1
COND1:=(HIGH-LOW)/LOW>0.01;
//涨停,只选取前25天,这里举例取18
COND2:=REF(MAX(HIGH,1),1)/REF(CLOSE,1)>1.097 AND (HIGH=LOW) AND (CLOSE-REF(CLOSE,1))/REF(CLOSE,1)<0.009 AND (BARSSINCE(CLOSE=REF(MAX(HIGH,1),1))/COUNT>COUNT-18);
//2021年营收/2018年营收大于1.1
COND3:=REF(营业收入TTM, 0)/REF(营业收入TTM, 3)>1.1;
//综合条件
CONDITION:=COND1 AND COND2 AND COND3;
SIGNAL:=CHECKCOND(CONDITION,1);
Python代码参考
import pandas as pd
import akshare as ak
from talib import abstract
def get_trade_data(stock_code):
stock_history_df = ak.stock_zh_a_daily(symbol=stock_code, adjust="hfq")
stock_history_df.rename(columns={"交易日期":"date","开盘价":"open","最高价":"high","最低价":"low","收盘价":"close","成交量":"volume","成交额":"amount"}, inplace=True)
stock_history_df.sort_values("date", ascending=True, inplace=True)
stock_history_df['pct_chg'] = stock_history_df['close'].pct_change() * 100
stock_history_df['net_volume'] = stock_history_df['close'] * stock_history_df['volume'] * stock_history_df['pct_chg'] / 100 /10000
stock_income_df = ak.stock_financial_report(stock=stock_code, symbol="income")
stock_income_df.rename(columns={"时间":"time","营业收入":"revenue"}, inplace=True)
stock_income_df = stock_income_df[~stock_income_df['time'].str.contains("预计")]
stock_income_df['time'] = pd.to_datetime(stock_income_df['time'])
stock_income_df = stock_income_df.set_index('time').resample('Y').sum().reset_index()
stock_income_df = stock_income_df[['time','revenue']].copy()
stock_income_df['ratio'] = stock_income_df['revenue'].pct_change(periods=3).fillna(0) + 1
stock_income_df['year'] = stock_income_df['time'].apply(lambda x: x.year).astype(str)
stock_income_df = stock_income_df.set_index('year')
ratio_dict = stock_income_df['ratio'].to_dict()
df = stock_history_df[['date','open','high','low','close','volume','net_amount','pct_chg','net_volume']].copy()
# 振幅
cond1 = (df['high'] - df['low']) / df['low'] > 0.01
# 涨停
cond2 = (df['high'] / df['close'].shift(1) > 1.097) & (df['high'] == df['low']) & (df['close'] / df['close'].shift(1) - 1 < 0.009) & (df['close'] == df['high'].shift(1))
cond2 = cond2.rolling(window=18).sum() > 0
# 营收增长率
cond3 = df['date'].apply(lambda x: str(x.year)).apply(lambda x: ratio_dict.get(x, 0)) > 1.1
# 综合条件
basic_cond = cond1 & cond2 & cond3
df = df[basic_cond].reset_index(drop=True)
return df
def select(df):
return df.sort_values('net_volume', ascending=False)
## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
select_sentence = '市值小于100亿' #选股语句。
模板如何使用?
点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
## 如果有任何问题请添加 下方的二维码进群提问。
