问财量化选股策略逻辑
选取振幅大于1,KDJ刚形成金叉,并且出现酷特智能早晨之星的股票进入待投资池。
选股逻辑分析
- 振幅大于1表明该股票波动性大,有望获得高回报;
- KDJ刚形成金叉,预示着市场情绪化好转,有较大概率涨势明显;
- 酷特智能早晨之星是一种底部反转结构,表示一波下跌已经结束,有望迎来上涨行情。
有何风险?
- 忽略了公司未来的盈利情况和发展趋势,风险高;
- 股票价格回归平均线,高处不胜寒,过于依赖容易陷入盈利陷阱;
- 酷特智能早晨之星虽然是一种反转结构,但并不能保证一定有效,存在失灵的风险。
如何优化?
- 引入更多基本面因素,如利润增长、营收增长等指标,更好地评估股票的投资价值;
- 在引入技术面指标的同时,可以考虑加入基于市值的指标,如市值因子、盈利因子等;
- 可以结合其他反转结构,如底部长下影线、发动机等结合使用。
最终的选股逻辑
选取振幅大于1,KDJ刚形成金叉,并且出现酷特智能早晨之星的股票进入待投资池。
同花顺指标公式代码参考
// 振幅大于1
COND1:=(HIGH-LOW)/LOW>0.01;
// KDJ金叉
RSV:=(CLOSE-LOWEST(CLOSE,9))/(HIGHEST(CLOSE,9)-LOWEST(CLOSE,9))*100;
K:SMA(RSV,3,1);
D:SMA(K,3,1);
J:3*K-2*D;
GCROSS1:CROSS(J,D);
COND2:=REF(GCROSS1,1)=0 AND GCROSS1=1;
// 酷特智能早晨之星
c1:=C>o;
c2:=REF(C,1)<REF(O,1);
c3:=REF(C,2)<REF(O,2);
c4:=AVG(MAX(REF(CLOSE,1),REF(OPEN,1)),REF(OPEN,1))>AVG(MAX(C,O),C);
c5:=AVG(MAX(REF(CLOSE,1),REF(OPEN,1)),REF(OPEN,1))>AVG(MAX(REF(CLOSE,2),REF(OPEN,2)),REF(OPEN,2));
c6:=IF(c2 AND c3 AND c4 AND c5,1,0);
COND3:=REF(c6,1)=0 AND c6=1;
// 综合条件
CONDITION:=COND1 AND COND2 AND COND3;
SIGNAL:=CHECKCOND(CONDITION,1);
Python代码参考
import pandas as pd
import akshare as ak
import talib
def get_trade_data(stock_code):
stock_history_df = ak.stock_zh_a_daily(symbol=stock_code, adjust="hfq")
stock_history_df.rename(columns={"交易日期":"date","开盘价":"open","最高价":"high","最低价":"low","收盘价":"close","成交量":"volume","成交额":"amount","流通市值":"circ_cap","市盈率":"pe","市净率":"pb","名称":"name","换手率":"turnover_ratio"}, inplace=True)
stock_history_df.sort_values("date", ascending=True, inplace=True)
stock_history_df['pct_chg'] = stock_history_df['close'].pct_change() * 100
stock_history_df['net_volume'] = stock_history_df['close'] * stock_history_df['volume'] * stock_history_df['pct_chg'] / 100 /10000
df = stock_history_df[['date','open','high','low','close','volume','net_amount','pct_chg','net_volume','pe','pb','circ_cap','turnover_ratio']].copy()
# 振幅
cond1 = (df['high'] - df['low']) / df['low'] > 0.01
# KDJ
high, low, close = df['high'].values, df['low'].values, df['close'].values
rsv = (close - pd.Series(low).rolling(window=9).min().values) / (pd.Series(high).rolling(window=9).max().values - pd.Series(low).rolling(window=9).min().values) * 100
k = pd.Series(rsv).rolling(window=3).mean().values
d = pd.Series(k).rolling(window=3).mean().values
j = 3 * k - 2 * d
kdj_cond = (j[-1] > d[-1]) & (j[-2] < d[-2])
# 酷特智能早晨之星
c1, c2, c3, c4, c5 = df['close'] > df['open'], df['close'].shift() < df['open'].shift(), df['close'].shift(2) < df['open'].shift(2), pd.Series(df[['close','open']].shift()).max(axis=1).rolling(window=2).mean().shift() > pd.Series(df[['close','open']]).max(axis=1), pd.Series(df[['close','open']].shift()).max(axis=1).rolling(window=3).mean().shift() > pd.Series(df[['close','open']]).max(axis=1).shift(2)
morning_star_cond = c1 & c2 & c3 & c4 & c5
# 综合条件
basic_cond = cond1 & kdj_cond & morning_star_cond
df = df[basic_cond].reset_index(drop=True)
return df
def select(df):
return df
## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
select_sentence = '市值小于100亿' #选股语句。
模板如何使用?
点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
## 如果有任何问题请添加 下方的二维码进群提问。
