(supermind)振幅大于1、KDJ刚形成金叉、剔除昨日涨停_

用户头像神盾局量子研究部
2023-08-21 发布

问财量化选股策略逻辑

选取振幅大于1,KDJ刚形成金叉,剔除昨日涨停的股票进入待投资池。

选股逻辑分析

  1. 振幅大于1表明该股票波动性大,有望获得高回报;
  2. KDJ刚形成金叉,预示着市场情绪好转,有较大概率涨势明显;
  3. 剔除昨日涨停,避免市场炒作和操纵等因素影响股票价格走势。

有何风险?

  1. 忽略了股票的基本面和市场趋势等因素;
  2. 仅仅凭借过去的涨停板来选取股票,存在较大风险;
  3. 风险控制上需要更加谨慎和灵活。

如何优化?

  1. 同时结合基本面、市场趋势以及历史交易行为等多种因素进行综合考虑;
  2. 参考和比较多种技术指标,避免对某一指标过于依赖;
  3. 增加交易判断的灵活性,例如相比仅仅依赖涨停板加入更多判断点。

最终的选股逻辑

选取振幅大于1,KDJ刚形成金叉,剔除昨日涨停的股票进入待投资池。

同花顺指标公式代码参考

//振幅大于1
COND1:=(HIGH-LOW)/LOW > 0.01;
//MACD指标
DIF:EMA(CLOSE,12)-EMA(CLOSE,26);
DEA:EMA(DIF,9);
MACD:(DIF-DEA)*2;
GCROSS1:CROSS(MACD,DEA);
COND3:=REF(GCROSS1,1)=0 AND GCROSS1=1 AND MACD>0;
//KDJ指标
RSV:=(CLOSE-LOWEST(CLOSE,9))/(HIGHEST(CLOSE,9)-LOWEST(CLOSE,9))*100;
K:SMA(RSV,3,1);
D:SMA(K,3,1);
J:3*K-2*D;
GCROSS2:CROSS(J,D);
COND2:=REF(GCROSS2,1)=0 AND GCROSS2=1;
// 剔除昨日涨停
C1:=REF(CLOSE,1)<1.098*REF(CLOSE,2);
C2:=REF(CLOSE,1)*1.098>MIN(LOW,REF(LOW,1));
COND4:=C1 OR C2;
//综合条件
CONDITION:=COND1 AND COND2 AND COND3 AND COND4;
SIGNAL:=CHECKCOND(CONDITION,1);

Python代码参考

import pandas as pd
import akshare as ak

def get_trade_data(stock_code):
    stock_history_df = ak.stock_zh_a_daily(symbol=stock_code, adjust="hfq")
    stock_history_df.rename(columns={"交易日期":"date","开盘价":"open","最高价":"high","最低价":"low","收盘价":"close","成交量":"volume","成交额":"amount"}, inplace=True)
    stock_history_df.sort_values("date", ascending=True, inplace=True)
    stock_history_df['pct_chg'] = stock_history_df['close'].pct_change() * 100
    stock_history_df['net_volume'] = stock_history_df['close'] * stock_history_df['volume'] * stock_history_df['pct_chg'] / 100 /10000
    df = stock_history_df[['date','open','high','low','close','volume','net_amount','pct_chg','net_volume']].copy()
    # 振幅
    cond1 = (df['high'] - df['low']) / df['low'] > 0.01
    # KDJ指标
    high, low, close = df['high'].values, df['low'].values, df['close'].values
    rsv = (close - pd.Series(low).rolling(window=9).min().values) / (pd.Series(high).rolling(window=9).max().values - pd.Series(low).rolling(window=9).min().values) * 100
    k = pd.Series(rsv).rolling(window=3).mean().values
    d = pd.Series(k).rolling(window=3).mean().values
    j = 3 * k - 2 * d
    kdj_cond = (j[-1] > d[-1]) & (j[-2] < d[-2])
    # MACD指标
    macd, signal, hist = MACD(df['close'].values, fastperiod=12, slowperiod=26, signalperiod=9)
    macd_cond = (hist[-1] > 0) & (hist[-2] < 0)
    # 剔除昨日涨停
    zt_cond1 = df['close'].shift(1) < 1.098 * df['close'].shift(2)
    zt_cond2 = df['close'].shift(1) * 1.098 > df[['low', 'close']].shift(1).min(axis=1).shift(1)
    zt_cond = zt_cond1 | zt_cond2
    # 综合条件
    basic_cond = cond1 & kdj_cond & macd_cond & zt_cond
    df = df[basic_cond].reset_index(drop=True)
    return df
    
def select(df):
    return df
    ## 如何进行量化策略实盘?
    请把您优化好的选股语句放入文章最下面模板的选股语句中即可。

    select_sentence = '市值小于100亿' #选股语句。

    模板如何使用?

    点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。


    ## 如果有任何问题请添加 下方的二维码进群提问。
    ![94c5cde12014f99e262a302741275d05.png](http://u.thsi.cn/imgsrc/pefile/94c5cde12014f99e262a302741275d05.png)
收益&风险
源码

评论