问财量化选股策略逻辑
选取振幅大于1,KDJ刚形成金叉,2021年内涨幅较大的股票进入待投资池。
选股逻辑分析
- 振幅大于1表明该股票波动性大,有望获得高回报;
- KDJ刚形成金叉,预示着市场情绪好转,有较大概率涨势明显;
- 选出2021年涨幅较大的股票,考虑其具有较好的市场表现,未来有较大潜力;
- 选股逻辑考虑了技术面和市场表现等因素。
有何风险?
- 对股票趋势的判断存在一定主观性,可能造成错误决策;
- KDJ指标容易出现拐点误判,导致选股不准确;
- 仅关注2021年涨幅较大的股票,可能造成样本数量偏小,无法全面反映市场状况;
- 此逻辑不考虑股票基本面和行业因素等非技术面因素,可能存在选股不准确性。
如何优化?
- 增加股票的市值、成交量等非技术面因素,进行全面的多因素选股;
- 考虑加入更多技术指标,如MACD、RSI、DMI等指标,增加选股准确性;
- 判断涨幅时可以不仅考虑2021年表现,而是延长时间跨度,考虑近几年甚至长期表现;
- 引入行业分析和基本面分析等非技术面因素,提高选股的准确性。
最终的选股逻辑
选取振幅大于1,KDJ刚形成金叉,近3年涨幅较大的股票进入待投资池。
同花顺指标公式代码参考
// 振幅大于1
COND1:=(HIGH-LOW)/LOW>0.01;
// KDJ指标
RSV:=(CLOSE-LOWEST(CLOSE,9))/(HIGHEST(CLOSE,9)-LOWEST(CLOSE,9))*100;
K:SMA(RSV,3,1);
D:SMA(K,3,1);
J:3*K-2*D;
GCROSS1:CROSS(J,D);
COND2:=REF(GCROSS1,1)=0 AND GCROSS1=1;
// 3年涨幅
CONDITION1 := YEAR(DATE)=YEAR(REFDATE(DATE,-3)) AND (YEAR(DATE)>YEAR(REFDATE(DATE,-3)) OR MONTH(DATE)>=MONTH(REFDATE(DATE,-3)) AND DAY(DATE)>=DAY(REFDATE(DATE,-3)))
CONDITION2 := YEAR(DATE)=YEAR(REFDATE(DATE,-2)) AND (YEAR(DATE)>YEAR(REFDATE(DATE,-2)) OR MONTH(DATE)>=MONTH(REFDATE(DATE,-2)) AND DAY(DATE)>=DAY(REFDATE(DATE,-2)))
CONDITION3 := YEAR(DATE)=YEAR(REFDATE(DATE,-1)) AND (YEAR(DATE)>YEAR(REFDATE(DATE,-1)) OR MONTH(DATE)>=MONTH(REFDATE(DATE,-1)) AND DAY(DATE)>=DAY(REFDATE(DATE,-1)))
CHANGE := (CLOSE-CLOSE[1])/CLOSE[1]*100;
COND3 := MAX(MAX(MAX((CONDITION1?CHANGE:0),(CONDITION2?CHANGE:0)),(CONDITION3?CHANGE:0)),(YEAR(DATE)>=YEAR(GETSYSTEMTRADEDAY()-1)?0:CHANGE))>30;
// 综合条件
CONDITION:=COND1 AND COND2 AND COND3;
SIGNAL:=CHECKCOND(CONDITION,1);
Python代码参考
import pandas as pd
import akshare as ak
import talib
def get_trade_data(stock_code):
stock_history_df = ak.stock_zh_a_daily(symbol=stock_code, adjust="hfq")
stock_history_df.rename(columns={"交易日期":"date","开盘价":"open","最高价":"high","最低价":"low","收盘价":"close","成交量":"volume","成交额":"amount","流通市值":"circ_cap","市盈率":"pe","市净率":"pb","名称":"name","换手率":"turnover_ratio","未清偿规模":"unpaid_CB_size","未清偿可转债简称":"CB_name"}, inplace=True)
stock_history_df.sort_values("date", ascending=True, inplace=True)
stock_history_df['pct_chg'] = stock_history_df['close'].pct_change() * 100
stock_history_df['net_volume'] = stock_history_df['close'] * stock_history_df['volume'] * stock_history_df['pct_chg'] / 100 /10000
df = stock_history_df[['date','open','high','low','close','volume','net_amount','pct_chg','net_volume','pe','pb','circ_cap','turnover_ratio','unpaid_CB_size','CB_name']].copy()
# 振幅
cond1 = (df['high'] - df['low']) / df['low'] > 0.01
# KDJ指标
high, low, close = df['high'].values, df['low'].values, df['close'].values
rsv = (close - pd.Series(low).rolling(window=9).min().values) / (pd.Series(high).rolling(window=9).max().values - pd.Series(low).rolling(window=9).min().values) * 100
k = pd.Series(rsv).rolling(window=3).mean().values
d = pd.Series(k).rolling(window=3).mean().values
j = 3 * k - 2 * d
kdj_cond = (j[-1] > d[-1]) & (j[-2] < d[-2])
# 3年涨幅
change1 = (df['close'] - df['close'].shift(1)) / df['close'].shift(1)
change2 = (df['close'] - df['close'].shift(252)) / df['close'].shift(252)
change3 = (df['close'] - df['close'].shift(504)) / df['close'].shift(504)
change = pd.concat([change1, change2, change3], axis=1).max(axis=1)
cond3 = change[change.index>=pd.to_datetime('2018-01-01')].max() > 0.3
# 综合条件
basic_cond = cond1 & kdj_cond & cond3
df = df[basic_cond].reset_index(drop=True)
return df
def select(df):
return df
## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
select_sentence = '市值小于100亿' #选股语句。
模板如何使用?
点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
## 如果有任何问题请添加 下方的二维码进群提问。
