问财量化选股策略逻辑
选取振幅大于1,KDJ刚形成金叉,市值小于100亿元且近三年均为盈利的企业进入待投资池。
选股逻辑分析
- 振幅大于1表明该股票波动性大,有望获得高回报;
- KDJ刚形成金叉,预示着市场情绪好转,有较大概率涨势明显;
- 选择小市值、近三年盈利企业,可以筛选出低估值、盈利、投资价值的企业;
- 选股逻辑考虑了技术面和基本面因素。
有何风险?
- 振幅大,波动性高,基本面不稳定的股票风险高;
- KDJ指标容易出现拐点误判,导致选股不准确;
- 市值小的企业经常伴随着流通性不足、询价不利、ST等问题;
- 基于近三年的盈利状况选股,有可能引入时间偏差造成选股不准确性。
如何优化?
- 综合考虑股票的技术面和基本面因素;
- 加入更多技术指标,如MACD、RSI、DMI等指标,增加选股准确性;
- 根据分析后的财务报表信息,结合历史数据构建高质量基本面评估模型,提高选股准确性;
- 适度放宽市值约束条件,可以增加待投资池资产的丰富性。
最终的选股逻辑
选取振幅大于1,KDJ刚形成金叉,市值小于100亿元且近三年平均净利润为正的企业进入待投资池。
同花顺指标公式代码参考
// 振幅大于1
COND1:=(HIGH-LOW)/LOW>0.01;
// KDJ指标
RSV:=(CLOSE-LOWEST(CLOSE,9))/(HIGHEST(CLOSE,9)-LOWEST(CLOSE,9))*100;
K:SMA(RSV,3,1);
D:SMA(K,3,1);
J:3*K-2*D;
GCROSS1:CROSS(J,D);
COND2:=REF(GCROSS1,1)=0 AND GCROSS1=1;
// 近三年盈利
COND3:=핡탓佌佂(Net_profits>0,1) AND (REF(핡탓佌佂(Net_profits>0,1),1)>0) AND (REF(REF(핡탓佌佂(Net_profits>0,1),1),2)>0) AND (Net_profits>0);
// 市值小于100亿
COND4:=(CIRC_CAP<100000000);
// 综合条件
CONDITION:=COND1 AND COND2 AND COND3 AND COND4;
SIGNAL:=CHECKCOND(CONDITION,1);
Python代码参考
import pandas as pd
import akshare as ak
import talib
def get_trade_data(stock_code):
stock_history_df = ak.stock_zh_a_daily(symbol=stock_code, adjust="hfq")
stock_history_df.rename(columns={"交易日期":"date","开盘价":"open","最高价":"high","最低价":"low","收盘价":"close","成交量":"volume","成交额":"amount","流通市值":"circ_cap","市盈率":"pe","市净率":"pb","名称":"name","换手率":"turnover_ratio","未清偿规模":"unpaid_CB_size","未清偿可转债简称":"CB_name"}, inplace=True)
stock_history_df.sort_values("date", ascending=True, inplace=True)
stock_history_df['pct_chg'] = stock_history_df['close'].pct_change() * 100
stock_history_df['net_volume'] = stock_history_df['close'] * stock_history_df['volume'] * stock_history_df['pct_chg'] / 100 /10000
df = stock_history_df[['date','open','high','low','close','volume','net_amount','pct_chg','net_volume','pe','pb','circ_cap','turnover_ratio','unpaid_CB_size','CB_name']].copy()
# 振幅
cond1 = (df['high'] - df['low']) / df['low'] > 0.01
# KDJ指标
high, low, close = df['high'].values, df['low'].values, df['close'].values
rsv = (close - pd.Series(low).rolling(window=9).min().values) / (pd.Series(high).rolling(window=9).max().values - pd.Series(low).rolling(window=9).min().values) * 100
k = pd.Series(rsv).rolling(window=3).mean().values
d = pd.Series(k).rolling(window=3).mean().values
j = 3 * k - 2 * d
kdj_cond = (j[-1] > d[-1]) & (j[-2] < d[-2])
# 市值小于100亿
cond4 = (df['circ_cap'] < 100000000)
# 近三年盈利
net_profits = ak.stock_financial_report(stock_code=stock_code, symbol="profit_statement", start_year=2020, end_year=2018, type="sina")
net_profits_cond = (net_profits['归属于母公司所有者的净利润'] > 0).rolling(window=3).apply(lambda x: x.sum() == 3).shift(1).fillna(False)
# 综合条件
basic_cond = cond1 & kdj_cond & net_profits_cond & cond4
df = df[basic_cond].reset_index(drop=True)
return df
def select(df):
return df
## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
select_sentence = '市值小于100亿' #选股语句。
模板如何使用?
点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
## 如果有任何问题请添加 下方的二维码进群提问。
