(iwencai选股策略)今日最低价小于昨日最低价_、(昨日换手率_(今日竞价成交量除昨日

用户头像神盾局量子研究部
2023-09-01 发布

问财量化选股策略逻辑

选股逻辑:rsi小于65,(昨日换手率*(今日竞价成交量/昨日成交量))>0.5<2,今日最低价小于昨日最低价。

选股逻辑分析

该选股逻辑主要利用了RSI指标的低位、高换手和短期趋势下跌的股票来寻找买入时机。通过筛选出RSI指标低于65且换手率上升的股票并且在跌势中有较强的信号,可以捕捉到市场波动中的买入机会。同时加入今日最低价小于昨日最低价的条件,帮助进一步筛选出有下行趋势但处于低位的股票。

有何风险?

该选股逻辑可能会忽略一些长期稳定股票的选择。同时,过分强调短期波动反而容易产生市场短期行情与长期基本面的背离,影响选股效果。另外,单一性过强的选股逻辑容易产生过拟合的风险。因此,需要定期进行回测和优化。

如何优化?

可以考虑加入一些基本面指标,如PE、PB等,辅助筛选股票,并考虑增加市场趋势的判断。此外,可以加入技术分析指标,如MACD、DMI等,来进一步规避市场短期行情的风险,同时提高选股预判能力。

最终的选股逻辑

选股逻辑:rsi小于65,(昨日换手率*(今日竞价成交量/昨日成交量))>0.5<2,今日最低价小于昨日最低价, ROE大于20%且连续3年增长,市盈率低于同行业平均水平并且市净率低于同行业平均水平。

同花顺指标公式代码参考

XG1: RSI(14) < 65
XG2: (REF(VOL, 1) * REF(CLOSE, 1) / (TRADE * 10000)) > 0.5 AND (REF(VOL, 1) * REF(CLOSE, 1) / (TRADE * 10000)) < 2
XG3: LOW < REF(LOW, 1)
XG4: COUNT(LASTYEAR(ROE - LASTYEAR(ROE) > 0), 3) >= 3 AND (PE < AVGIND(PE, 2) AND PB < AVGIND(PB, 2))
...
SELECT IF(XG1 AND XG2 AND XG3 AND XG4, 1, 0)

Python代码参考

import pandas as pd
import tushare as ts
import talib


def get_stock_list():
    pro = ts.pro_api()

    # 获取股票基本信息
    df_basic = pro.stock_basic(exchange='', list_status='L', fields='ts_code,symbol,market,area,industry,list_date')

    # 计算RSI、换手率和竞价成交量
    df_price = pro.daily(trade_date='20211013', fields='ts_code,close,low')
    df_price = pd.merge(df_price, df_basic, on='ts_code')
    df_price['rsi'] = talib.RSI(df_price['close'].values, timeperiod=14)

    df_moneyflow = pro.moneyflow(ts_code='', trade_date='20211013',
                                  fields='ts_code,trade_date,buy_sm_amount,sell_sm_amount,vol,pct_chg,close')
    df_moneyflow['turnover_rate'] = df_moneyflow['vol'] / df_moneyflow['vol'].shift(1)
    df_moneyflow['bid_vol'] = df_moneyflow['vol'] * df_moneyflow['pct_chg'] / 100 / 10000
    df_moneyflow = df_moneyflow.groupby('ts_code')[['turnover_rate', 'bid_vol']].sum().reset_index()
    df_moneyflow['bid_turnover'] = df_moneyflow['bid_vol'] / df_moneyflow['turnover_rate']
    df_moneyflow = pd.merge(df_moneyflow, df_basic, on='ts_code')

    # 增加今日最低价小于昨日最低价的条件
    df_price['low_1day_ago'] = df_price['low'].shift(1)
    df_price = df_price[df_price['low'] < df_price['low_1day_ago']]

    # 计算ROE
    df_income = pro.income(ts_code='', start_date='20150101', end_date='20211231',
                           fields='ts_code, end_date, n_income, total_assets, equity')
    df_income['roe'] = df_income['n_income'] / df_income['equity']
    df_roe = df_income.groupby('ts_code')[['end_date', 'roe']].apply(lambda x: x.set_index('end_date').squeeze())
    df_roe.columns = ['year' + str(year) for year in range(2015, 2022)]
    df_roe = df_roe.reset_index()
    df_roe['last_year'] = df_roe['end_date'].apply(lambda x: x.year-1)
    df_roe = df_roe.melt(id_vars=['ts_code', 'end_date', 'last_year'], var_name='year', value_name='roe')
    df_roe['year'] = df_roe['year'].str[4:].astype(int)
    df_roe = df_roe[df_roe['last_year'] == df_roe['year'] - 1]
    df_roe = df_roe.groupby('ts_code')['roe'].rolling(3, min_periods=3).apply(lambda x: (x > 0).all())
    df_roe = df_roe.reset_index()
    df_roe.columns = ['ts_code', 'roe']

    # 计算PE、PB的平均值
    df_fundamentals = pro.fina_indicator(ts_code='', end_date='20201231',
                                          fields='ts_code,pe,pb,industry,trade_date')
    df_fundamentals = df_fundamentals.groupby('ts_code')[['pe', 'pb']].mean().reset_index()
    df_fundamentals.columns = ['ts_code', 'avg_pe', 'avg_pb']
    df_fundamentals['avg_pe'] = df_fundamentals.groupby('industry')['avg_pe'].transform(lambda x: x.median())
    df_fundamentals['avg_pb'] = df_fundamentals.groupby('industry')['avg_pb'].transform(lambda x: x.median())

    # 筛选股票
    df_result = pd.merge(df_moneyflow[(df_moneyflow['bid_turnover'] > 0.5) &
                                       (df_moneyflow['bid_turnover'] < 2)], df_price[df_price['rsi'] < 65], on='ts_code')
    df_result = pd.merge(df_result, df_roe[df_roe['roe']], on='ts_code')
    df_result = pd.merge(df_result, df_fundamentals[df_fundamentals['avg_pe'] > df_fundamentals['pe']][df_fundamentals['avg_pb'] > df_fundamentals['pb']], on='ts_code')
    df_result = pd.merge(df_result, df_basic, on='ts_code')
    df_result = df_result[['ts_code', 'symbol', 'market', 'area', 'industry', 'list_date']]

    return df_result

Python依赖库

  • pandas

  • tushare

  • talib

      ## 如何进行量化策略实盘?
      请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
    
      select_sentence = '市值小于100亿' #选股语句。
    
      模板如何使用?
    
      点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
    
    
      ## 如果有任何问题请添加 下方的二维码进群提问。
      ![94c5cde12014f99e262a302741275d05.png](http://u.thsi.cn/imgsrc/pefile/94c5cde12014f99e262a302741275d05.png)
    
收益&风险
源码

评论