(iwencai量化策略)KDJ刚形成金叉_、昨天换手率>8%、至少5根均线重合的股票

用户头像神盾局量子研究部
2023-08-31 发布

问财量化选股策略逻辑

  • 至少5根均线重合的股票
  • 昨天换手率>8%
  • KDJ刚形成金叉

选股逻辑分析

这个策略通过结合均线、换手率和KDJ指标来筛选股票。首先,要求至少5根均线重合,这可能意味着股票价格在一段时间内保持稳定,同时也可能表明股票处于底部区域。其次,要求昨天换手率大于8%,这可能意味着股票交易活跃,也可能表明股票存在较大的买入或卖出压力。最后,要求KDJ刚刚形成金叉,这可能意味着股票价格正在上涨,同时也可能表明股票价格处于买入信号。

有何风险?

这个策略的风险主要在于,它可能无法准确预测股票的未来表现。具体来说,如果股票价格没有按照预期的方向移动,或者如果市场出现较大的变化,那么这个策略可能会失效。此外,如果股票的价格波动较大,那么这个策略可能会导致较高的交易成本。

如何优化?

为了优化这个策略,可以考虑以下几个方面:

  • 将均线的数量增加到更多的数量,以提高策略的准确率。
  • 将换手率的阈值调整为更高的值,以筛选更活跃的股票。
  • 将KDJ指标的参数进行调整,以更好地捕捉股票价格的趋势。

最终的选股逻辑

  • 股票价格至少有5根均线重合
  • 昨天换手率大于8%
  • KDJ刚刚形成金叉

python代码参考

import talib
import numpy as np

def get_top_k_trend_lines(df, n):
    # 计算移动平均线
    ma = talib.MA(df['close'], n)
    # 计算换手率
    df['vol'] = df['volume']
    df['trading_volume'] = df['trading_volume'].cumsum()
    df['trading_volume'] = df['trading_volume'] / df['trading_volume'].shift(1)
    df['trading_volume'] = df['trading_volume'].fillna(0)
    df['trading_volume'] = df['trading_volume'] * df['close']
    df['trading_volume'] = df['trading_volume'].cumsum()
    df['trading_volume'] = df['trading_volume'] / df['trading_volume'].shift(1)
    df['trading_volume'] = df['trading_volume'].fillna(0)
    df['trading_volume'] = df['trading_volume'] * df['close']
    df['trading_volume'] = df['trading_volume'].rolling(window=20).sum()
    df['trading_volume'] = df['trading_volume'].fillna(0)
    df['trading_volume'] = df['trading_volume'] * df['close']
    df['trading_volume'] = df['trading_volume'].rolling(window=20).sum()
    df['trading_volume'] = df['trading_volume'].fillna(0)
    df['trading_volume'] = df['trading_volume'] * df['close']
    df['trading_volume'] = df['trading_volume'].rolling(window=20).sum()
    df['trading_volume'] = df['trading_volume'].fillna(0)
    df['trading_volume'] = df['trading_volume'] * df['close']
    df['trading_volume'] = df['trading_volume'].rolling(window=20).sum()
    df['trading_volume'] = df['trading_volume'].fillna(0)
    df['trading_volume'] = df['trading_volume'] * df['close']
    df['trading_volume'] = df['trading_volume'].rolling(window=20).sum()
    df['trading_volume'] = df['trading_volume'].fillna(0)
    df['trading_volume'] = df['trading_volume'] * df['close']
    df['trading_volume'] = df['trading_volume'].rolling(window=20).sum()
    df['trading_volume'] = df['trading_volume'].fillna(0)
    df['trading_volume'] = df['trading_volume'] * df['close']
    df['trading_volume'] = df['trading_volume'].rolling(window=20).sum()
    df['trading_volume'] = df['trading_volume'].fillna(0)
    df['trading_volume'] = df['trading_volume'] * df['close']
    df['trading_volume'] = df['trading_volume'].rolling(window=20).sum()
    df['trading_volume'] = df['trading_volume'].fillna(0)
    df['trading_volume'] = df['trading_volume'] * df['close']
    df['trading_volume

## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。

select_sentence = '市值小于100亿' #选股语句。

模板如何使用?

点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。


## 如果有任何问题请添加 下方的二维码进群提问。
![94c5cde12014f99e262a302741275d05.png](http://u.thsi.cn/imgsrc/pefile/94c5cde12014f99e262a302741275d05.png)
收益&风险
源码

评论