(iwencai量化策略)按今日竞价金额排序前5_、竞价涨幅>-2<5、今日增仓占比_5%

用户头像神盾局量子研究部
2023-08-31 发布

问财量化选股策略逻辑

  • 今日增仓占比>5%
  • 竞价涨幅>-2<5
  • 按今日竞价金额排序前5

选股逻辑分析

  • 今日增仓占比>5%:说明这只股票在最近一段时间内有较多的资金流入,说明市场对该股票的看好程度较高。
  • 竞价涨幅>-2<5:说明这只股票在竞价阶段的涨幅在合理范围内,没有出现过大的波动,说明市场对该股票的预期较为稳定。
  • 按今日竞价金额排序前5:说明这只股票在今天的竞价阶段交易较为活跃,说明市场对该股票的关注度较高。

有何风险?

  • 由于该策略只考虑了股票的短期表现,可能会忽略股票的长期趋势,从而导致选出的股票表现不佳。
  • 如果市场对该股票的预期过高,可能会导致股票在竞价阶段涨幅过大,从而使得该策略无法选出这只股票。

如何优化?

  • 可以考虑加入更多因素,例如股票的市盈率、市净率等,以更全面地评估股票的价值和风险。
  • 可以考虑加入更多时间周期的数据,例如短期、中期和长期数据,以更好地把握股票的趋势。

最终的选股逻辑

  • 今日增仓占比>5%
  • 竞价涨幅>-2<5
  • 按今日竞价金额排序前5
  • 股票的市盈率、市净率等
  • 短期、中期和长期数据

python代码参考

import talib

def get_top_five_worthiest_bars(data):
    # 计算今日增仓占比
    open_price = data['open']
    close_price = data['close']
    volume = data['volume']
    total_amount = volume * close_price
    total_amount = total_amount.sum()
    daily_buy_amount = total_amount / len(data)
    daily_buy_amount = daily_buy_amount.sum()
    daily_buy_amount_percentage = daily_buy_amount / open_price.sum() * 100
    top_five_worthiest_bars = []
    for bar in data:
        if bar['open'] == open_price[0]:
            bar['buy_amount_percentage'] = daily_buy_amount_percentage
            top_five_worthiest_bars.append(bar)
    top_five_worthiest_bars.sort(key=lambda x: x['buy_amount_percentage'], reverse=True)
    return top_five_worthiest_bars

def get_top_five_bars(data):
    # 计算今日增仓占比
    open_price = data['open']
    close_price = data['close']
    volume = data['volume']
    total_amount = volume * close_price
    total_amount = total_amount.sum()
    daily_buy_amount = total_amount / len(data)
    daily_buy_amount = daily_buy_amount.sum()
    daily_buy_amount_percentage = daily_buy_amount / open_price.sum() * 100
    top_five_bars = []
    for bar in data:
        if bar['open'] == open_price[0]:
            bar['buy_amount_percentage'] = daily_buy_amount_percentage
            top_five_bars.append(bar)
    top_five_bars.sort(key=lambda x: x['buy_amount_percentage'], reverse=True)
    return top_five_bars

def get_top_five_bars_with_sorting(data):
    # 计算今日增仓占比
    open_price = data['open']
    close_price = data['close']
    volume = data['volume']
    total_amount = volume * close_price
    total_amount = total_amount.sum()
    daily_buy_amount = total_amount / len(data)
    daily_buy_amount = daily_buy_amount.sum()
    daily_buy_amount_percentage = daily_buy_amount / open_price.sum() * 100
    top_five_bars = []
    for bar in data:
        if bar['open'] == open_price[0]:
            bar['buy_amount_percentage'] = daily_buy_amount_percentage
            top_five_bars.append(bar)
    top_five_bars.sort(key=lambda x: x['buy_amount_percentage'], reverse=True)
    return top_five_bars

def get_top_five_bars_with_sorting_and_filtering(data):
    # 计算今日增仓占比
    open_price = data['open']
    close_price = data['close']
    volume = data['volume']
    total_amount = volume * close_price
    total_amount = total_amount.sum()
    daily_buy_amount = total_amount / len(data)
    daily_buy_amount = daily_buy_amount.sum()
    daily_buy_amount_percentage = daily_buy_amount / open_price.sum() * 100
    top_five_bars = []
    for bar in data:
        if bar['open'] == open_price[0]:
            bar

## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。

select_sentence = '市值小于100亿' #选股语句。

模板如何使用?

点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。


## 如果有任何问题请添加 下方的二维码进群提问。
![94c5cde12014f99e262a302741275d05.png](http://u.thsi.cn/imgsrc/pefile/94c5cde12014f99e262a302741275d05.png)
收益&风险
源码

评论