问财量化选股策略逻辑
选股逻辑:rsi小于65,(昨日换手率*(今日竞价成交量/昨日成交量))>0.5<2,底部抬高。
选股逻辑分析
该选股逻辑是根据RSI指标、换手率和竞价成交量以及趋势指标来筛选股票的。当RSI小于65时,可以说明股票并未进入高估区,换手率和竞价成交量则反映了市场情绪变化。底部抬高指标可以表示股票即将走出底部,趋势向上。
有何风险?
该选股逻辑所采用的指标并不全面,如果市场环境发生较大变化,部分选股指标可能失效,选股结果可能会受到影响。
如何优化?
可以适当增加选股指标,如市盈率、市净率等单项指标,同时也可以采用综合性指标来筛选正负面因素,提高选股准确性。
最终的选股逻辑
选股逻辑:rsi小于65,(昨日换手率*(今日竞价成交量/昨日成交量))>0.5<2,底部抬高。
同花顺指标公式代码参考
XG1: RSI(14) < 65
XG2: (REF(VOL,1)*REF(CLOSE,1)/(TRADE*10000))>0.5 AND (REF(VOL,1)*REF(CLOSE,1)/(TRADE*10000))<2
XG3: Trough(CLOSE, 30) > Trough(CLOSE, 60) AND Trough(CLOSE, 30) > Trough(CLOSE, 120) AND
Trough(CLOSE, 30) > Trough(CLOSE, 250)
…
SELECT IF(XG1 AND XG2 AND XG3, 1, 0)
Python代码参考
import pandas as pd
import tushare as ts
import talib
def get_stock_list():
pro = ts.pro_api()
# 获取股票基本信息
df_basic = pro.stock_basic(exchange='', list_status='L', fields='ts_code,symbol,market,area,industry,list_date')
# 计算RSI
df_price = pro.daily(trade_date='20211008', fields='ts_code,close')
df_price = pd.merge(df_price, df_basic, on='ts_code')
df_price['rsi'] = talib.RSI(df_price['close'].values, timeperiod=14)
# 计算换手率和竞价成交量
df_moneyflow = pro.moneyflow(ts_code='', trade_date='20211008',
fields='ts_code,trade_date,buy_sm_amount,sell_sm_amount,vol,pct_chg,close')
df_moneyflow['turnover_rate'] = df_moneyflow['vol'] / df_moneyflow['vol'].shift(1)
df_moneyflow['bid_vol'] = df_moneyflow['vol'] * df_moneyflow['pct_chg'] / 100 / 10000
df_moneyflow['pm_inflow'] = (df_moneyflow['buy_sm_amount'] - df_moneyflow['sell_sm_amount']) / 10000
df_moneyflow = df_moneyflow.groupby('ts_code')[['turnover_rate', 'bid_vol', 'pm_inflow']].sum().reset_index()
df_moneyflow['bid_turnover'] = df_moneyflow['bid_vol'] / df_moneyflow['turnover_rate']
df_moneyflow = pd.merge(df_moneyflow, df_basic, on='ts_code')
# 计算底部抬高指标
df_trend = pro.daily(ts_code='',
fields='ts_code,trade_date,high,low,close')
df_trend = pd.merge(df_trend, df_basic, on='ts_code')
df_trend['low30'] = df_trend['low'].rolling(30).min()
df_trend['low60'] = df_trend['low'].rolling(60).min()
df_trend['low120'] = df_trend['low'].rolling(120).min()
df_trend['low250'] = df_trend['low'].rolling(250).min()
df_trend['is_bottom'] = (df_trend['low'] == df_trend['low30']) & (df_trend['low30'] == df_trend['low60']) & \
(df_trend['low60'] == df_trend['low120']) & (df_trend['low120'] == df_trend['low250'])
df_trend = df_trend[df_trend['is_bottom']]
df_trend = pd.merge(df_trend[['ts_code', 'trade_date']], df_basic, on='ts_code')
# 筛选股票
df_result = pd.merge(df_moneyflow[(df_moneyflow['bid_turnover'] > 0.5) &
(df_moneyflow['bid_turnover'] < 2)], df_price[df_price['rsi'] < 65], on='ts_code')
df_result = pd.merge(df_result, df_trend, on='ts_code')
df_result = pd.merge(df_result, df_basic, on='ts_code')
df_result = df_result[['ts_code', 'symbol', 'market', 'area', 'industry', 'list_date']]
return df_result
Python依赖库
-
pandas
-
tushare
-
talib
## 如何进行量化策略实盘? 请把您优化好的选股语句放入文章最下面模板的选股语句中即可。 select_sentence = '市值小于100亿' #选股语句。 模板如何使用? 点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。 ## 如果有任何问题请添加 下方的二维码进群提问。 

