问财量化选股策略逻辑
选股逻辑为:在换手率3%-12%、反包的股票中,连续3天以上大单净量大于0.05。
选股逻辑分析
该选股策略采用了换手率选股策略和反包指标,同时加入了大单净量因素,可以一定程度上挖掘出一些有潜力的股票。但是,只考虑近3天的大单净量,可能考虑不全面,需要结合更多指标综合考虑。
有何风险?
大单净量因素可能存在预测错误的风险,同时选股策略过于简单,只考虑一个或几个因素,可能漏掉其他优质股票。
如何优化?
可以结合其他指标,如市盈率、价格/收入比等基本面指标,同时加入技术分析指标,综合考虑。
最终的选股逻辑
选股条件为:在换手率3%-12%、反包的股票中,连续3天以上大单净量大于0.05的股票。
同花顺指标公式代码参考
选股条件:turnover_rate>=3 AND turnover_rate<=12
AND (STICKORYC("fgs", ["1t", "2t", "3t", "4t"], "t_1", "lg",
"sm", "b") + STICKORYC("fjj", ["1t", "2t", "3t", "4t"], "t_1",
"lg", "sm", "b")) > 0
AND CDTJX("volume", "1d", "compare_g_b_3d_g_0.05")
选股结果:fml('turnover_rate>=3 AND turnover_rate<=12
AND (STICKORYC("fgs", ["1t", "2t", "3t", "4t"], "t_1", "lg",
"sm", "b") + STICKORYC("fjj", ["1t", "2t", "3t", "4t"], "t_1",
"lg", "sm", "b")) > 0
AND CDTJX("volume", "1d", "compare_g_b_3d_g_0.05")', 80)
Python代码参考
import tushare as ts
import pandas as pd
ts.set_token('your_token')
pro = ts.pro_api()
# 筛选好股票函数
def select_good_stocks():
main_board = ['sh', 'sz']
# 换手率3%-12%
df1 = pro.daily_basic(ts_code='', trade_date='20220110',
fields='ts_code,trade_date,turnover_rate')
df1 = df1[(df1['turnover_rate'] >= 3) & (df1['turnover_rate'] <= 12)]
# 反包策略
df2 = pro.daily(ts_code='', trade_date='20220110',
fields='ts_code,trade_date,low,high,pre_close')
df2['AT'] = df2['high'] - df2['low']
df2['ST'] = abs(df2['pre_close'] - df2['low'])
df2['BT'] = abs(df2['pre_close'] - df2['high'])
df2['RCT1'] = df2['ST'] / df2['AT']
df2['RCT2'] = df2['BT'] / df2['AT']
df2['RC'] = df2[['RCT1', 'RCT2']].min(axis=1)
df3 = df2[df2['trade_date'] == '20220110']
good_stocks = df3[df3['RC'] <= 0.2]['ts_code']
# 大单净量
df4 = pro.moneyflow(ts_code='', start_date='20220105', end_date='20220110',
fields='ts_code,trade_date,buy_sm_vol,sell_sm_vol')
df4['net_vol'] = (df4['buy_sm_vol'] - df4['sell_sm_vol']) / 10000
df5 = df4.groupby('ts_code')['net_vol'].rolling(3).sum()
df5.name = 'sum_3d'
df6 = pd.concat([df4, df5], axis=1).fillna(0)
good_stocks = good_stocks[good_stocks.isin(df6[df6['sum_3d'] >= 0.05]['ts_code'])]
# 主板股票
good_stocks = good_stocks[good_stocks.str[:2].isin(main_board)]
# 加入其他指标
good_stocks = pd.merge(good_stocks.to_frame(), pro.daily_basic(ts_code='', trade_date='20220110',
fields='ts_code,close,pe,pb,total_mv,float_mv'),
on='ts_code', how='inner')
return good_stocks
good_stocks = select_good_stocks()
print(good_stocks)
## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
select_sentence = '市值小于100亿' #选股语句。
模板如何使用?
点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
## 如果有任何问题请添加 下方的二维码进群提问。


