问财量化选股策略逻辑
选股逻辑为:在换手率3%-12%、反包、深证主板中市盈率0-29.01市净率0-3.11的股票中进行筛选。
选股逻辑分析
该选股策略在原有的换手率和反包因素的基础上,增加了市盈率和市净率的筛选条件,用于寻找在市盈率和市净率合理且交易活跃的股票。
有何风险?
该选股策略依然忽略了一些股票的基本面指标如收盘价等,可能选出市场表现较差的股票。同时,市盈率和市净率的选取上可能存在偏差,选出的股票也不能保证股价的稳定上涨。
如何优化?
可以增加更多的基本面因素进行筛选,同时优化所选定的市盈率和市净率范围,加入适当的容错率,以减少主观因素的影响。
最终的选股逻辑
选股条件为:在换手率3%-12%、反包、深证主板中市盈率0-29.01市净率0-3.11的股票中进行筛选。
同花顺指标公式代码参考
选股条件:(LOW < 12) AND (turnover_rate>=3 AND turnover_rate<=12)
AND (RC <= 0.2) AND (pe > 0 AND pe < 29.01) AND
(pb > 0 AND pb < 3.11) AND (exchange == 'SZSE')
AND (list_status == 'L')
选股结果:fml('(LOW < 12) AND (turnover_rate>=3 AND turnover_rate<=12)
AND (RC <= 0.2) AND (pe > 0 AND pe < 29.01) AND
(pb > 0 AND pb < 3.11) AND (exchange == 'SZSE')
AND (list_status == 'L')', 'desc', 'hot', 100)
Python代码参考
import tushare as ts
import pandas as pd
ts.set_token('your_token')
pro = ts.pro_api()
# 筛选好股票函数
def select_good_stocks():
# 满足条件的PE和PB
df1 = ts.get_stock_basics()
good_stocks = df1[(df1['pe'] > 0) & (df1['pe'] < 29.01) & (df1['pb'] > 0) & (df1['pb'] < 3.11)]
# 换手率3%-12%
df2 = pro.daily_basic(ts_code='', trade_date='20220110',
fields='ts_code,trade_date,turnover_rate')
good_stocks = pd.merge(good_stocks.reset_index(), df2,
on='ts_code', how='inner')
good_stocks = good_stocks[(good_stocks['turnover_rate'] >= 3) &
(good_stocks['turnover_rate'] <= 12)]
# 反包策略
df3 = pro.daily(ts_code='', trade_date='20220110',
fields='ts_code,trade_date,low,high,pre_close')
df3['AT'] = df3['high'] - df3['low']
df3['ST'] = abs(df3['pre_close'] - df3['low'])
df3['BT'] = abs(df3['pre_close'] - df3['high'])
df3['RCT1'] = df3['ST'] / df3['AT']
df3['RCT2'] = df3['BT'] / df3['AT']
df3['RC'] = df3[['RCT1', 'RCT2']].min(axis=1)
df4 = df3[df3['trade_date'] == '20220110']
good_stocks = pd.merge(good_stocks, df4[['ts_code', 'RC']],
on='ts_code', how='inner')
good_stocks = good_stocks[good_stocks['RC'] <= 0.2]
# 深证主板中选股
good_stocks = good_stocks[good_stocks['exchange'] == 'SZSE']
good_stocks = good_stocks[good_stocks['list_status'] == 'L']
# 返回股票代码
good_stocks = good_stocks['ts_code'].reset_index(drop=True)
return good_stocks
good_stocks = select_good_stocks()
print(good_stocks)
## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
select_sentence = '市值小于100亿' #选股语句。
模板如何使用?
点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
## 如果有任何问题请添加 下方的二维码进群提问。


