(supermind量化策略)换手率3%-12%、反包、未清偿可转债简称不可为空_

用户头像神盾局量子研究部
2023-08-30 发布

问财量化选股策略逻辑

选股逻辑为:在换手率3%-12%、反包、未清偿可转债简称不可为空的股票中进行筛选。

选股逻辑分析

该选股策略同样结合了三种经典的技术分析指标,分别是换手率、反包和未清偿可转债简称,加上一个可转债简称不可为空的判断条件。选股策略的目的是寻找具有较强动能、股价表现较好且存在转债溢价的可转债股票。

有何风险?

同样,该选股策略没有考虑公司的基本面数据对于股票价格的影响,并且对于可转债市场的动态情况和转股行情等也没有考虑到,可能导致在某些市场行情下选出的股票性价比不优,投资风险加大。

如何优化?

同样可以加入基本面指标进行股票筛选,通过对公司的财务数据进行综合考虑,如市盈率、市净率、收益率等等参数进行股票的评估筛选。另外,可以加入可转债市场的行情指标,如可转债与正股价差、到期时间等等参数进行综合考虑,提高筛选的精度和效率。

最终的选股逻辑

选股条件为:在换手率3%-12%、反包、未清偿可转债简称不可为空的股票中进行筛选。

同花顺指标公式代码参考

选股条件:(HIGH/REF(CLOSE,1)-1>=0.098) AND (LOW/REF(CLOSE,1)-1<=-0.098) AND (turnover_rate>=3 AND turnover_rate<=12) AND (cb_name != '') AND (exchange == 'SZSE') AND (list_status == 'L')
选股结果:fml('(HIGH/REF(CLOSE,1)-1>=0.098) AND (LOW/REF(CLOSE,1)-1<=-0.098) AND (turnover_rate>=3 AND turnover_rate<=12) AND (cb_name != '') AND (exchange == 'SZSE') AND (list_status == 'L')', 'desc', 'hot', 100)

Python代码参考

import tushare as ts
import pandas as pd

ts.set_token('your_token')
pro = ts.pro_api()

# 筛选好股票函数
def select_good_stocks():
    # 反包策略
    df1 = pro.daily(ts_code='', trade_date='20220111',
                     fields='ts_code,trade_date,low,high,pre_close')
    df1['AT'] = df1['high'] - df1['low']
    df1['ST'] = abs(df1['pre_close'] - df1['low'])
    df1['BT'] = abs(df1['pre_close'] - df1['high'])
    df1['RCT1'] = df1['ST'] / df1['AT']
    df1['RCT2'] = df1['BT'] / df1['AT']
    df1['RC'] = df1[['RCT1', 'RCT2']].min(axis=1)

    # 换手率3%-12%
    df2 = pro.daily_basic(ts_code='', trade_date='20220111',
                           fields='ts_code,trade_date,turnover_rate')
    good_stocks = pd.merge(df1[['ts_code', 'RC']],
                           df2.iloc[:, :-1], on='ts_code', how='inner')
    good_stocks = good_stocks[(good_stocks['turnover_rate'] >= 3) &
                              (good_stocks['turnover_rate'] <= 12)]

    # 未清偿可转债简称不为空
    df3 = pro.cb_daily(ts_code='', trade_date='20220111',
                        fields='ts_code,cb_name')
    good_stocks = pd.merge(good_stocks, df3[['ts_code', 'cb_name']],
                           on='ts_code', how='inner')
    good_stocks = good_stocks[good_stocks['cb_name'] != '']

    # 深证主板中选股
    good_stocks = good_stocks[good_stocks['exchange'] == 'SZSE']
    good_stocks = good_stocks[good_stocks['list_status'] == 'L']

    # 返回股票代码
    good_stocks = good_stocks['ts_code'].reset_index(drop=True)

    return good_stocks

good_stocks = select_good_stocks()
print(good_stocks)
    ## 如何进行量化策略实盘?
    请把您优化好的选股语句放入文章最下面模板的选股语句中即可。

    select_sentence = '市值小于100亿' #选股语句。

    模板如何使用?

    点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。


    ## 如果有任何问题请添加 下方的二维码进群提问。
    ![94c5cde12014f99e262a302741275d05.png](http://u.thsi.cn/imgsrc/pefile/94c5cde12014f99e262a302741275d05.png)
收益&风险
源码

评论