问财量化选股策略逻辑
选股逻辑为:在换手率3%-12%、反包,昨日成交额大于6千万的股票中,挑选最近五日内在10点之前涨停的股票。
选股逻辑分析
该选股策略结合了换手率、反包指标和成交额等因素,排除了过于冷门的股票,可以一定程度上挖掘出一些短期走势较好的股票。但是,同样只考虑最近五日内在10点之前涨停这一因素,忽略了其他重要因素,可能漏掉优质股票。
有何风险?
该选股策略忽略了股票的基本面和技术面分析,只考虑了短期走势,存在预测错误的风险。同时,过度追逐短期涨停股可能导致风险过高。
如何优化?
可以结合股票的基本面和技术面指标,如市盈率、价格/收入比及动量指标等,综合考虑选股。
最终的选股逻辑
选股条件为:在换手率3%-12%、反包,昨日成交额大于6千万的股票中,挑选最近五日内在10点之前涨停的股票。
同花顺指标公式代码参考
选股条件:turnover_rate>=3 AND turnover_rate<=12
AND (STICKORYC("fgs", ["1t", "2t", "3t", "4t"], "t_1", "lg",
"sm", "b") + STICKORYC("fjj", ["1t", "2t", "3t", "4t"], "t_1",
"lg", "sm", "b")) > 0
AND TRADEEXPVALUE('da2', '6000') > 0
AND CDTJX('maxupordown_5d', '1d', 'compare_g_0')['20120110'] == 1
选股结果:fml('turnover_rate>=3 AND turnover_rate<=12
AND (STICKORYC("fgs", ["1t", "2t", "3t", "4t"], "t_1", "lg",
"sm", "b") + STICKORYC("fjj", ["1t", "2t", "3t", "4t"], "t_1",
"lg", "sm", "b")) > 0
AND TRADEEXPVALUE('da2', '6000') > 0
AND CDTJX('maxupordown_5d', '1d', 'compare_g_0')['20120110'] == 1', 80)
Python代码参考
import tushare as ts
import pandas as pd
ts.set_token('your_token')
pro = ts.pro_api()
# 筛选好股票函数
def select_good_stocks():
main_board = ['sh', 'sz']
# 换手率3%-12%
df1 = pro.daily_basic(ts_code='', trade_date='20220110',
fields='ts_code,trade_date,turnover_rate')
df1 = df1[(df1['turnover_rate'] >= 3) & (df1['turnover_rate'] <= 12)]
# 反包策略
df2 = pro.daily(ts_code='', trade_date='20220110',
fields='ts_code,trade_date,low,high,pre_close')
df2['AT'] = df2['high'] - df2['low']
df2['ST'] = abs(df2['pre_close'] - df2['low'])
df2['BT'] = abs(df2['pre_close'] - df2['high'])
df2['RCT1'] = df2['ST'] / df2['AT']
df2['RCT2'] = df2['BT'] / df2['AT']
df2['RC'] = df2[['RCT1', 'RCT2']].min(axis=1)
df3 = df2[df2['trade_date'] == '20220110']
good_stocks = df3[df3['RC'] <= 0.2]['ts_code']
# 成交额大于6千万
df4 = pro.moneyflow(ts_code='', trade_date='20220110',
fields='ts_code,trade_date,vol,amount')
df4 = df4[df4['vol'] > 0]
df4['exp_amount'] = (df4['amount'] / df4['vol']) * 100 # 计算股票均价
good_stocks = good_stocks[good_stocks.isin(df4[df4['exp_amount'] > 6000]['ts_code'])]
# 涨停战法
df5 = pro.limit_list(trade_date='20220110', limit_type='U',
fields='ts_code,trade_date,change')
df6 = df5.groupby('ts_code')['change'].rolling(5).apply(lambda x: (x > 0).all())
df6.name = 'up_5d'
df7 = pd.concat([df5, df6], axis=1).fillna(0)
good_stocks = good_stocks[good_stocks.isin(df7[df7['up_5d']]['ts_code'])]
# 非ST股票
good_stocks = good_stocks[~good_stocks.str.contains('ST')]
# 主板股票
good_stocks = good_stocks[good_stocks.str[:2].isin(main_board)]
# 加入其他指标
good_stocks = pd.merge(good_stocks.to_frame(),
pro.daily_basic(ts_code='', trade_date='20220110',
fields='ts_code,close,pe,pb,total_mv,float_mv,turnover_rate'),
on='ts_code', how='inner')
return good_stocks
good_stocks = select_good_stocks()
print(good_stocks)
## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
select_sentence = '市值小于100亿' #选股语句。
模板如何使用?
点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
## 如果有任何问题请添加 下方的二维码进群提问。


