问财量化选股策略逻辑
选股逻辑为:在换手率3%-12%、反包、昨日主力控盘的股票中进行筛选。
选股逻辑分析
该选股策略综合考虑了股票的交易量、价格、趋势和市场情绪等因素,并加入主力控盘的因素,寻找在一定时间内有较好表现的股票。
有何风险?
该选股策略仍然忽略了一些基本面指标如市值、盈利等,可能会选出潜力较小的个股。同时,主力控盘的指标难以确定,容易有误判。
如何优化?
可以加入更多的基本面指标和量价指标等,并且主力控盘需要加以细化,以确保选出的股票具有更好的表现。
最终的选股逻辑
选股条件为:在换手率3%-12%、反包、昨日主力控盘的股票中进行筛选。
同花顺指标公式代码参考
选股条件:turnover_rate>=3 AND turnover_rate<=12 AND
(RC <= 0.2) AND (ZLGC = 1)
选股结果:fml('turnover_rate>=3 AND turnover_rate<=12 AND
(RC <= 0.2) AND (ZLGC = 1)', 80)
Python代码参考
import tushare as ts
import pandas as pd
ts.set_token('your_token')
pro = ts.pro_api()
# 筛选好股票函数
def select_good_stocks():
# 换手率3%-12%
df1 = pro.daily_basic(ts_code='', trade_date='20220110',
fields='ts_code,trade_date,turnover_rate')
df1 = df1[(df1['turnover_rate'] >= 3) & (df1['turnover_rate'] <= 12)]
# 反包策略
df2 = pro.daily(ts_code='', trade_date='20220110',
fields='ts_code,trade_date,low,high,pre_close')
df2['AT'] = df2['high'] - df2['low']
df2['ST'] = abs(df2['pre_close'] - df2['low'])
df2['BT'] = abs(df2['pre_close'] - df2['high'])
df2['RCT1'] = df2['ST'] / df2['AT']
df2['RCT2'] = df2['BT'] / df2['AT']
df2['RC'] = df2[['RCT1', 'RCT2']].min(axis=1)
df3 = df2[df2['trade_date'] == '20220110']
good_stocks = df3[df3['RC'] <= 0.2]['ts_code']
# 昨日主力控盘
df4 = pro.moneyflow(ts_code='', trade_date='20220110', fields='ts_code,trade_date')
df4 = df4[df4['trade_date'] == '20220110']
df5 = pd.merge(df4, pro.moneyflow(ts_code='', start_date='20220106', end_date='20220110'),
on=['ts_code', 'trade_date'], how='inner')
df5['buy_amount'] = df5['buy_sm_vol'] + df5['buy_md_vol'] + df5['buy_lg_vol']
df5['sell_amount'] = df5['sell_sm_vol'] + df5['sell_md_vol'] + df5['sell_lg_vol']
df5['net_amount'] = df5['buy_amount'] - df5['sell_amount']
df5['zlyesterday'] = df5['net_amount'].shift(1)
df5 = df5[df5['zlyesterday'] > 0]['ts_code']
good_stocks = pd.merge(good_stocks.to_frame(), df5.to_frame(),
on='ts_code', how='inner')['ts_code']
# 加入其它指标
good_stocks = pd.merge(good_stocks.to_frame(),
pro.daily(ts_code=good_stocks.to_string(index=False),
start_date='20200709', end_date='20220110',
fields='ts_code,tradedate,pct_chg'),
on='ts_code', how='inner')
good_stocks['ZT'] = good_stocks['pct_chg'].apply(lambda x: 1 if x > 9.8 else 0)
good_stocks['ZT'] = good_stocks.groupby('ts_code')['ZT'].apply(lambda x: x.rolling(500).sum())
# 涨停次数
good_stocks = good_stocks[good_stocks['ZT'] >= 2][['ts_code']]
# 剔除ST股
good_stocks = pd.merge(good_stocks, pro.stock_basic(list_status='L',
exchange='', fields='ts_code'),
on='ts_code', how='inner')
return good_stocks.reset_index(drop=True)
good_stocks = select_good_stocks()
print(good_stocks)
## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
select_sentence = '市值小于100亿' #选股语句。
模板如何使用?
点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
## 如果有任何问题请添加 下方的二维码进群提问。


