问财量化选股策略逻辑
选股逻辑为:在换手率3%-12%、反包的股票中,选出周线MA5金叉MA10的股票。
选股逻辑分析
该选股策略针对近期市场行情,将技术指标MA5和MA10与活跃度指标相结合进行综合筛选,选股策略相对较准确。
有何风险?
该选股策略虽然考虑了股票走势的长期和短期趋势,但短期技术指标仍可能存在较大的噪声干扰,需要进一步优化。
如何优化?
可以引入更多的技术指标,比如成交量、MACD等,以及基本面指标,比如市盈率、市净率等进行综合考虑选股。
最终的选股逻辑
选股条件为:在换手率3%-12%、反包的股票中,选出周线MA5金叉MA10的股票。
同花顺指标公式代码参考
选股条件:turnover_rate>=3 AND turnover_rate<=12
AND (STICKORYC("fgs", ["1t", "2t", "3t", "4t"], "t_1", "lg",
"sm", "b") + STICKORYC("fjj", ["1t", "2t", "3t", "4t"], "t_1",
"lg", "sm", "b")) > 0
AND MA5 > MA10
AND REF(MA5,1) <= REF(MA10,1)
选股结果:fml('turnover_rate>=3 AND turnover_rate<=12
AND (STICKORYC("fgs", ["1t", "2t", "3t", "4t"], "t_1", "lg",
"sm", "b") + STICKORYC("fjj", ["1t", "2t", "3t", "4t"], "t_1",
"lg", "sm", "b")) > 0
AND MA5 > MA10
AND REF(MA5,1) <= REF(MA10,1)', 80)
Python代码参考
import tushare as ts
import pandas as pd
ts.set_token('your_token')
pro = ts.pro_api()
# 筛选好股票函数
def select_good_stocks():
# 换手率3%-12%
df1 = pro.daily_basic(ts_code='', trade_date='20220110',
fields='ts_code,trade_date,turnover_rate')
df1 = df1[(df1['turnover_rate'] >= 3) & (df1['turnover_rate'] <= 12)]
# 反包策略
df2 = pro.daily(ts_code='', trade_date='20220110',
fields='ts_code,trade_date,low,high,pre_close')
df2['AT'] = df2['high'] - df2['low']
df2['ST'] = abs(df2['pre_close'] - df2['low'])
df2['BT'] = abs(df2['pre_close'] - df2['high'])
df2['RCT1'] = df2['ST'] / df2['AT']
df2['RCT2'] = df2['BT'] / df2['AT']
df2['RC'] = df2[['RCT1', 'RCT2']].min(axis=1)
df3 = df2[df2['trade_date'] == '20220110']
good_stocks = df3[df3['RC'] <= 0.2]['ts_code']
# MA5金叉MA10
df4 = pro.weekly(ts_code=good_stocks.to_string(index=False),
trade_date='20220107',
fields='ts_code,trade_date,ma5,ma10')
df4['MA5_1'] = df4['ma5'].shift(1)
df4['MA10_1'] = df4['ma10'].shift(1)
good_stocks = df4[(df4['ma5'] > df4['ma10']) & (df4['MA5_1'] <= df4['MA10_1'])]['ts_code']
# 非ST股票
good_stocks = good_stocks[~good_stocks.str.contains('ST')]
# 加入其它指标
good_stocks = pd.merge(good_stocks.to_frame(),
pro.daily_basic(ts_code=good_stocks.to_string(index=False),
trade_date='20220110',
fields='ts_code,close,pe,pb,total_mv,
float_mv,turnover_rate,roe_diluted'),
on='ts_code', how='inner')
return good_stocks
good_stocks = select_good_stocks()
print(good_stocks)
## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
select_sentence = '市值小于100亿' #选股语句。
模板如何使用?
点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
## 如果有任何问题请添加 下方的二维码进群提问。


