问财量化选股策略逻辑
该选股策略选股逻辑为:选取换手率3%-12%,前25天有涨停,近一个月内有过涨停的股票。
选股逻辑分析
该选股策略主要是通过分析股票交易量、交易价格、股价涨跌情况等因素来进行选股,挖掘有潜力的股票。其中主要选股逻辑包括选取换手率在3%-12%之间的股票,表示该股票的流动性和成交量都比较活跃,并且该股票过去25天内有出现过涨停的情况,表明该股票具有一定的市场关注度。同时,还需要考察近一个月内是否有过涨停,以此来确定该股票的上涨潜力。
有何风险?
该选股策略具有一定的市场风险。因为股票的未来表现是无法预测的,所以只是通过过去的涨幅来预测未来表现并不一定靠谱,有可能造成投资难以盈利的风险。此外,该选股策略还忽略了股票基本面的分析,可能会选择一些基本面不够强的股票。
如何优化?
可以加入其他技术面指标作为辅助,如KDJ、BOLL等,结合股票基本面分析来进行选股,保证选股策略的全面性和科学性。
最终的选股逻辑
该选股策略选股逻辑为:选择换手率在3%-12%之间的股票,同时过去25天内有出现过涨停的情况,近一个月内有过涨停。
同花顺指标公式代码参考
通达信指标代码:
COND1:= LOW<=REF(CLOSE,1)*1.1 AND HIGH>REF(HIGH,1) AND V>MA(V,5)*1.5 AND V<MA(V,5)*3.5;
COND2:= LEN(C>=REF(C,24)) >= 1;
COND3:= LEN(C>=REF(HIGH,1)) >= 1;
SELECTED:=COND1 AND COND2 AND COND3;
python代码参考
import pandas as pd
import numpy as np
import time
from datetime import datetime, timedelta
from pytdx.hq import TdxHq_API
from pytdx.util.best_ip import select_best_ip
api = TdxHq_API()
ip = select_best_ip('tdx')
api.connect(ip['ip'], ip['port'])
df_stocks = pd.read_csv('stock_list.csv')
selected_stocks = []
for code in df_stocks['code']:
if code.startswith('60') and df_stocks[df_stocks['code'] == code]['market_type'].values[0] != 5 and \
df_stocks[df_stocks['code'] == code]['delist_date'].values[0] == '':
if not api.is_ST(code) and api.get_stock_list_by_market(1)['name'].tolist().count(df_stocks[df_stocks['code'] == code]['name'].values[0]) == 0 and \
api.get_stock_list_by_market(2)['name'].tolist().count(df_stocks[df_stocks['code'] == code]['name'].values[0]) == 0 and \
df_stocks[df_stocks['code'] == code]['list_date'].values[0] <= '2000-01-01':
try:
stock_info = api.get_security_quotes([code])[0]
bid1 = stock_info['bid1_price']
ask1 = stock_info['ask1_price']
price_limit_down = stock_info['lower_limit']
price_limit_up = stock_info['upper_limit']
vol_price_dx1 = stock_info['vol_price_dx1']
buy_vol_price_dx1 = stock_info['buy_vol_price_dx1']
sell_vol_price_dx1 = stock_info['sell_vol_price_dx1']
vol_price_dx2 = stock_info['vol_price_dx2']
k_data = api.get_security_bars(9, 0, code, 4, (datetime.today() - timedelta(days=1)).strftime('%Y-%m-%d'))
k_data.set_index('date', inplace=True)
v = k_data['volume']
cond1 = (k_data['low'] <= k_data['close'].shift(1) * 1.1) & (k_data['high'] > k_data['high'].shift(1)) & \
(v > v.rolling(window=5).mean() * 1.5) & (v < v.rolling(window=5).mean() * 3.5)
cond2 = len(k_data[k_data['close'] >= k_data['close'].shift(24)]) >= 1
cond3 = len(k_data[k_data['close'] >= k_data['high'].shift(1)]) >= 1
if len(k_data) > 0 and cond1 and cond2 and cond3:
selected_stocks.append({'code': code,
'name': df_stocks[df_stocks['code'] == code]['name'].values[0],
'market_type': df_stocks[df_stocks['code'] == code]['market_type'].values[0],
'industry': df_stocks[df_stocks['code'] == code]['industry'].values[0]})
except Exception as e:
print(e)
continue
df_selected_stocks = pd.DataFrame(selected_stocks)
api.disconnect()
## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
select_sentence = '市值小于100亿' #选股语句。
模板如何使用?
点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
## 如果有任何问题请添加 下方的二维码进群提问。


