问财量化选股策略逻辑
该选股策略选股逻辑为:换手率3%-12%,前25天有涨停,至少5根均线重合的股票。
选股逻辑分析
该选股策略主要是寻找换手率较活跃、前期多次有涨停表现的股票,同时通过筛选5根及以上均线重合的股票来寻找持续上涨趋势的股票。
有何风险?
该选股策略的风险之一是有可能被过度炒作的股票吸引而选出并且过度炒作的股票的后续表现具有不确定性。此外,因为选股策略没有考虑股票基本面等因素,可能会忽视其潜在的风险。
如何优化?
可以加入其他指标,例如市场情绪、基本面、资产和收入等因素,并借鉴定量分析技术,如主成分分析、随机森林等,来提高选股的精度。
最终的选股逻辑
该选股策略选股逻辑为:选择换手率3%-12%、前25天有涨停并至少5根均线重合的股票。
同花顺指标公式代码参考
通达信指标代码:
MA5:=MA(CLOSE, 5);
MA10:=MA(CLOSE, 10);
MA20:=MA(CLOSE, 20);
MA30:=MA(CLOSE, 30);
MA60:=MA(CLOSE, 60);
VOL:=VOL/100;
CONDITION1:=VOL/HGVBARS(V, 30) >= 3 AND VOL/HGVBARS(V, 30) <= 12 AND LEN(C > REF(C ,25) AND C < ABS(REF(C, 1)) AND MA5 >= MA10 AND MA10 >= MA20 AND MA20 >= MA30 AND MA30 >= MA60) >= 5;
SELECTED:=CONDITION1;
python代码参考
import pandas as pd
import numpy as np
import time
from datetime import datetime, timedelta
from pytdx.hq import TdxHq_API
from pytdx.util.best_ip import select_best_ip
api = TdxHq_API()
ip = select_best_ip('tdx')
api.connect(ip['ip'], ip['port'])
df_stocks = pd.read_csv('stock_list.csv')
selected_stocks = []
for code in df_stocks['code']:
if code.startswith('60') and df_stocks[df_stocks['code'] == code]['market_type'].values[0] != 5 and \
df_stocks[df_stocks['code'] == code]['delist_date'].values[0] == '':
if not api.is_ST(code) and api.get_stock_list_by_market(1)['name'].tolist().count(df_stocks[df_stocks['code'] == code]['name'].values[0]) == 0 and \
api.get_stock_list_by_market(2)['name'].tolist().count(df_stocks[df_stocks['code'] == code]['name'].values[0]) == 0 and \
df_stocks[df_stocks['code'] == code]['list_date'].values[0] <= '2000-01-01':
try:
stock_info = api.get_security_quotes([code])[0]
k_data = api.get_security_bars(9, 0, code, 4, (datetime.today() - timedelta(days=1)).strftime('%Y-%m-%d'))
k_data.set_index('date', inplace=True)
ma5 = k_data['close'].rolling(5).mean()
ma10 = k_data['close'].rolling(10).mean()
ma20 = k_data['close'].rolling(20).mean()
ma30 = k_data['close'].rolling(30).mean()
ma60 = k_data['close'].rolling(60).mean()
if len(k_data) > 0 and \
k_data['turnover'].quantile(0.7) >= 0.03 and \
k_data['turnover'].quantile(0.7) <= 0.12 and \
len(k_data[k_data['pct_chg'] >= 9.90]) >= 1 and \
len(k_data[k_data['close'] >= ma5]) >= 5 and \
len(k_data[k_data['close'] >= ma10]) >= 5 and \
len(k_data[k_data['close'] >= ma20]) >= 5 and \
len(k_data[k_data['close'] >= ma30]) >= 5 and \
len(k_data[k_data['close'] >= ma60]) >= 5:
selected_stocks.append({'code': code,
'name': df_stocks[df_stocks['code'] == code]['name'].values[0],
'market_type': df_stocks[df_stocks['code'] == code]['market_type'].values[0],
'industry': df_stocks[df_stocks['code'] == code]['industry'].values[0]})
except Exception as e:
print(e)
continue
df_selected_stocks = pd.DataFrame(selected_stocks)
api.disconnect()
## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
select_sentence = '市值小于100亿' #选股语句。
模板如何使用?
点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
## 如果有任何问题请添加 下方的二维码进群提问。


