问财量化选股策略逻辑
该选股策略选股逻辑为:换手率3%-12%,前25天有涨停,KDJ刚形成金叉。
选股逻辑分析
该选股逻辑基于市场情绪和技术面分析,通过换手率的筛选,挑选出交投活跃程度适中的股票;通过出现涨停的标准选择市场热度较高的股票;加入KDJ指标作为技术面的分析标准,挑选出KDJ形成金叉的股票,即股价短期内的上涨趋势比较明显。
有何风险?
这种选股策略也忽略了公司的基本面、资产质量、盈利能力、行业竞争格局等因素,在采用市场情绪分析时存在较大的选择偏差,这可能导致投资风险的增加。同时,KDJ指标也不是绝对可靠的技术指标,存在回调的可能性,这可能会造成投资损失。
如何优化?
可以增加更多的筛选标准,加入基本面和资产质量、盈利能力、行业竞争格局等多重标准,综合考虑股票的综合风险和盈利能力。同时,也可以增加更多的技术指标来辅助买入点的确定,如MACD、BOLL等。
最终的选股逻辑
该选股策略选股逻辑为:综合市场情绪和技术面分析,选择交投活跃程度适中、市场热度高、营收稳定、业绩表现优异,具有投资价值的股票;加入前25天有涨停的标准筛选具有较高市场热度的股票,同时加入KDJ指标,筛选出KDJ形成金叉的股票,挑选出股价短期内的上涨趋势比较明显的股票,以实现做多。
同花顺指标公式代码参考
通达信指标代码:
KF:REF(LLF(),1)<REF(DZF(),1) AND DZF()> REF(WQ/2+WZ/3+SY/6,1) AND LLF()<REF(DZF(),1) AND DZF()>=60 AND RSI()>30 AND S30<0 AND MA5>=C AND REF(CLOSE,1)<REF(MA5,1) AND MA5<MA10 AND KDJ(9,3,3).JSY>REF(KDJ(9,3,3).DSY,1) AND HHV(H,60)<=REF(HHV(H,60),10) AND VOL1>0 AND 3/REF(CLOSE,24)>0.96 AND 3/REF(CLOSE,24)<1.04
python代码参考
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import time
from pytdx.hq import TdxHq_API
from pytdx.util.best_ip import select_best_ip
api = TdxHq_API()
ip = select_best_ip('tdx')
api.connect(ip['ip'], ip['port'])
end_date = datetime.today().strftime('%Y-%m-%d')
start_date = (datetime.today() - timedelta(days=25)).strftime('%Y-%m-%d')
all_stocks = api.get_security_list(0, 0)
df_stocks = pd.DataFrame(all_stocks, columns=['code', 'name', 'market_type', 'exchange_type',
'industry', 'list_date', 'delist_date', 'infolevel'])
selected_stocks = []
for code in df_stocks['code']:
if code.startswith(('00', '60', '30')) and df_stocks[df_stocks['code'] == code]['market_type'].values[0] != 5:
if not api.is_ST(code) and api.get_stock_list_by_market(1)['name'].tolist().count(df_stocks[df_stocks['code'] == code]['name'].values[0]) == 0 and \
api.get_stock_list_by_market(2)['name'].tolist().count(df_stocks[df_stocks['code'] == code]['name'].values[0]) == 0 and \
df_stocks[df_stocks['code'] == code]['list_date'].values[0] <= '2000-01-01' and df_stocks[df_stocks['code'] == code]['delist_date'].values[0] == '':
try:
stock_info = api.get_security_quotes([code])[0]
k_data = api.get_security_bars(9, 0, code, 4, datetime.today().strftime('%Y-%m-%d'))
k_data['date'] = k_data['datetime'].apply(lambda x: datetime.fromtimestamp(time.mktime(time.strptime(str(x), '%Y%m%d%H%M%S'))).strftime('%Y-%m-%d'))
k_data.set_index('date', inplace=True)
k_data = k_data.loc[(k_data.index >= start_date) & (k_data.index <= end_date)]
if len(k_data) > 0 and \
k_data['turnover'].quantile(0.7) >= 0.03 and \
k_data['turnover'].quantile(0.7) <= 0.12 and \
len(k_data[k_data['pct_chg'] >= 9.90]) >= 1:
kdj = api.get_security_quotes([code, 0x1B0002])[0]
curr_kdj = kdj['5']
pre_kdj = kdj['1']
if (pre_kdj['j'] < pre_kdj['k']) and (curr_kdj['j'] >= curr_kdj['k']):
selected_stocks.append({'code': code,
'name': df_stocks[df_stocks['code'] == code]['name'].values[0],
'market_type': df_stocks[df_stocks['code'] == code]['market_type'].values[0],
'industry': df_stocks[df_stocks['code'] == code]['industry'].values[0],
'infolevel': df_stocks[df_stocks['code'] == code]['infolevel'].values[0]})
except Exception as e:
print(e)
continue
df_selected_stocks = pd.DataFrame(selected_stocks)
api.disconnect()
## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
select_sentence = '市值小于100亿' #选股语句。
模板如何使用?
点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
## 如果有任何问题请添加 下方的二维码进群提问。


