问财量化选股策略逻辑
选股逻辑为:在换手率3%-12%,K小于20,且连续三天收盘价下跌的前提下,选股买入。
选股逻辑分析
该选股策略关注股票的技术面,选择连续三天收盘价下跌的股票,可以更有效地筛选出具备买入潜力的股票。考虑到价格的波动,选择K值小于20的股票和换手率控制在3%-12%区间内,以规避低质量、高风险的股票。
有何风险?
该选股策略将忽略公司的基本面及市场情况等因素,采取单纯从技术面入手的方法选股,风险有些高。如股票公司本身的前景与市场状况并没有得到考虑,可能会发生股票下跌但真正价值却较高的情况。
如何优化?
可以对技术分析加入基本面的因素,以此来增加选股的准确性。另外,对于连续三天收盘价下跌的股票,也需要考虑其基本面情况,避免仅仅因为短期波动而忽略真实价值。
最终的选股逻辑
在换手率3%-12%,K小于20,连续三天收盘价下跌的前提下,筛选出符合条件的股票作为买入信号。同时,需结合其他层面的因素进行多角度综合分析,制定更加全面且完善的选股策略。
同花顺指标公式代码参考
选股条件:(C >= H1 AND REF(C, 1) >= REF(H1, 1)) AND (C >= H2 AND REF(C, 1) >= REF(H2, 1)) AND (C >= H3 AND REF(C, 1) >= REF(H3, 1)) AND (K < 20) AND (VOLUME >= 0.02 * CAPITALA) AND (SWS1 >= 'vs01' AND SWS1 <= 'vs02') AND (TCLOSE >= 5) AND (TCAP >= 2000000000)
选股结果:fml('(C >= H1 AND REF(C, 1) >= REF(H1, 1)) AND (C >= H2 AND REF(C, 1) >= REF(H2, 1)) AND (C >= H3 AND REF(C, 1) >= REF(H3, 1)) AND (K < 20) AND (VOLUME >= 0.02 * CAPITALA) AND (SWS1 >= \'vs01\' AND SWS1 <= \'vs02\') AND (TCLOSE >= 5) AND (TCAP >= 2000000000)', TC)
Python代码参考
import tushare as ts
import pandas as pd
# 筛选好股票函数
def select_good_stocks():
# 换手率3%-12%
basic_info = ts.get_stock_basics()
good_stocks = basic_info[(basic_info['turnoverratio'] >= 3) & (basic_info['turnoverratio'] <= 12)]
# 连续三天收盘价下跌
for stock in good_stocks.index.tolist():
df1 = ts.get_k_data(stock, ktype='D')
if df1.iloc[-3]['close'] < df1.iloc[-2]['close'] and df1.iloc[-2]['close'] < df1.iloc[-1]['close']:
continue
good_stocks.drop([stock], inplace=True)
# K值小于20
for stock in good_stocks.index.tolist():
df2 = ts.get_k_data(stock, ktype='D')
if df2.iloc[-1]['K'] >= 20:
good_stocks.drop([stock], inplace=True)
continue
# 行业情况
sw_industry = ts.get_industry_classified()
sw_industry.set_index('code', inplace=True)
good_stocks = pd.merge(good_stocks, sw_industry, on='code')
good_stocks = good_stocks[good_stocks['c_name'].str.contains('饮料酒进口')]
# 收盘价、总市值
close_df = ts.get_today_all()[['code', 'trade', 'mktcap']]
close_df.columns = ['code', 'close', 'mktcap']
close_df['code'] = close_df['code'].apply(lambda x: x[:-3])
# 筛选出条件符合的股票
good_stocks = pd.merge(good_stocks, close_df, on='code')
good_stocks = good_stocks[good_stocks['close'] > 5]
good_stocks = good_stocks[good_stocks['mktcap'] > 2000000000]
return good_stocks
good_stocks = select_good_stocks()
print(good_stocks.head(10))
## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
select_sentence = '市值小于100亿' #选股语句。
模板如何使用?
点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
## 如果有任何问题请添加 下方的二维码进群提问。


