需要帮助?

试试AI小助手吧

(supermind量化策略)task17/a/换手率3%-12%、买一量>卖一量、酷特智

用户头像神盾局量子研究部
2023-08-30 发布

问财量化选股策略逻辑

选股逻辑为:在换手率在3%~12%之间、买一量大于卖一量的股票中,选取当日出现酷特智能早晨之星的股票。

选股逻辑分析

该选股策略主要从交易活跃度、市场参与度、技术分析等角度综合考虑,选取具有一定上涨潜力的股票,并注重短期涨势。

有何风险?

该选股策略过于依赖技术指标的解读,可能存在误判的情况。此外,选股时过于关注短期涨势而缺乏基本面等长期因素的考虑,可能导致筛选出具有较高波动性的股票,风险较高。

如何优化?

可以将技术指标与基本面因素相结合,增强选股的可靠性。此外,可以针对短期涨幅明显的股票,采取定期调仓或止盈策略,减小投资风险。

最终的选股逻辑

在换手率在3%~12%之间、买一量大于卖一量的股票中,选取当日出现酷特智能早晨之星的股票。

同花顺指标公式代码参考

SELECT SYMBOL FROM (
    SELECT SYMBOL FROM GDH WHERE NAME = '换手率' 
    AND (CAST(DATA AS NUMBER) > 3) AND (CAST(DATA AS NUMBER) < 12)
    AND SYMBOL IN (SELECT STOCK_CODE FROM STOCK_BASIC WHERE MARKET = '主板' AND LIST_STATUS = '上市')
    AND SYMBOL IN (SELECT STOCK_CODE FROM SDB WHERE NAME = '买一' AND CAST(DATA AS NUMBER) > CAST(FDATA AS NUMBER))
    AND SYMBOL IN (SELECT SYMBOL FROM BJDC WHERE NAME = '酷特智能早晨之星' 
        AND TO_DATE(TIME, 'yyyy-mm-dd') = TO_DATE('${date}', 'yyyy-mm-dd'))
) A 
LEFT JOIN (
    SELECT SYMBOL FROM (
        SELECT SYMBOL, SUM(HOLD_RATIO) RATIO FROM STOCK_HOLDERS WHERE TRADE_DATE = '2022-04-22' 
        GROUP BY SYMBOL HAVING SUM(HOLD_RATIO) > 0.2
    )
) B ON A.SYMBOL = B.SYMBOL 
WHERE B.SYMBOL IS NULL;

python代码参考

import pandas as pd
import tushare as ts

def select_stocks(date):
    pro = ts.pro_api()

    # 查询挂单大量大于卖单的股票
    market_df = pro.market_detail(symbol='', trade_date=date)
    df1 = market_df[(market_df['bid_vol'] > market_df['ask_vol'])]
    df1 = df1[df1['ts_code'].str.startswith('0')]

    # 按换手率筛选股票
    daily_basic_df = pro.daily_basic(ts_code='', trade_date=date, fields='ts_code,turnover_rate')
    df1 = pd.merge(df1, daily_basic_df, on='ts_code', how='inner')
    df1 = df1[(df1['turnover_rate'] > 3) & (df1['turnover_rate'] < 12)]

    # 按市场筛选股票
    df1 = df1[df1['ts_code'].str.startswith('0')]

    # 按买卖盘挂单量筛选股票
    sdb_df = pro.stk_holdernumber(ts_code='', start_date=date, end_date=date, fields='ts_code,mkv')
    sdb_df.rename(columns={'ts_code': 'symbol'}, inplace=True)
    df1 = pd.merge(df1, sdb_df, on='symbol', how='inner')
    df1 = df1[(df1['buy_sm_vol'] > df1['sell_sm_vol']) & (df1['buy_sm_vol'] > df1['mkv'])]

    # 查询日线数据,并选取前一天的数据
    ts_codes = df1['ts_code'].tolist()
    daily_df = pro.daily(ts_code=','.join(ts_codes), start_date=date, end_date=date, fields='ts_code,trade_date,open,close,pre_close')
    df1 = pd.merge(df1, daily_df, on='ts_code', how='inner')

    # 检查是否出现酷特智能早晨之星
    df2 = pro.ths_daily(ts_code=','.join(ts_codes), start_date=date, end_date=date, fields='ts_code,ths_day_desc')
    df2 = df2[df2['ths_day_desc'] == '酷特智能早晨之星']
    df1 = pd.merge(df1, df2, on='ts_code', how='inner')

    # 合并所有指标,返回选股结果
    return df1['ts_code']
    ## 如何进行量化策略实盘?
    请把您优化好的选股语句放入文章最下面模板的选股语句中即可。

    select_sentence = '市值小于100亿' #选股语句。

    模板如何使用?

    点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。


    ## 如果有任何问题请添加 下方的二维码进群提问。
    ![94c5cde12014f99e262a302741275d05.png](http://u.thsi.cn/imgsrc/pefile/94c5cde12014f99e262a302741275d05.png)
收益&风险
源码

评论