问财量化选股策略逻辑
选股逻辑:选择换手率在3%到12%之间,涨跌幅乘以超大单净量大于0,机器人概念且流通市值小于100亿。
选股逻辑分析
该选股策略在前一个策略基础上增加了机器人概念和流通市值的筛选条件。其中机器人概念是一种具有潜在成长性的新兴产业,考虑到该行业的前景,特别加入该条件。而流通市值小于100亿则是为了筛选具有潜在投资价值的中小市值股票。
有何风险?
机器人概念行业的投资风险相对较高,可能会存在一些公司的未来业绩不尽如人意的风险。同时,该选股策略中的指标筛选条件可能会对某些行业不适用,也可能存在指标过于简单的问题。
如何优化?
可以加入更多与基本面相关的指标,如市盈率、市净率、股息率等,以更全面地考虑选股因素。同时,应该对股票的所处行业进行适当的分析,选择更具有竞争力的标的。此外,也可以采用技术分析等方法以提高选股精准度。
最终的选股逻辑
选择换手率在3%到12%之间,涨跌幅乘以超大单净量大于0,并且属于机器人概念行业且流通市值小于100亿为选股范围。
同花顺指标公式代码参考
以下是同花顺指标所需公式:
选股公式:
-- 计算涨跌幅乘以超大单净量
SuperVolume: (C*Big)/10000;
-- 计算选股
SELECT STOCK_SYMBOL FROM (
SELECT STOCK_SYMBOL AS code, (C1 / C0) * SuperVolume AS Score FROM
(
SELECT STOCK_SYMBOL AS code, CLOSE AS C0 FROM CandlesMin WHERE Cdl[:1] = LAST AND TIME = [TIME-1] AND Year(DATE) = YEAR(TODAY)
) ST,
(
SELECT STOCK_SYMBOL AS code, CLOSE AS C1 FROM CandlesMin WHERE Cdl[:1] = LAST AND TIME = [TIME-0] AND Year(DATE) = YEAR(TODAY)
) MT,
(
SELECT STOCK_SYMBOL AS code, BUY_VOL_L_VOL AS Big FROM CandlesDay WHERE Cdl[:1] = LAST AND TIME = [TIME-1] AND Year(DATE) = YEAR(TODAY) AND VOL >= 1000000
) BT,
(
SELECT STOCK_SYMBOL AS code FROM StkBasInfo WHERE MarketValue < 100000000 AND Industry LIKE '%机器人%' AND FINFOURL NOT NULL AND FloatMarketValue < 10000000000
) SI
WHERE ST.code = MT.code AND MT.code = BT.code AND BT.code = SI.code AND ST.O / MA10 >= 0.98 AND ST.O / MA10 <= 1.02 AND Score > 0
ORDER BY Score DESC
LIMIT 10
Python代码参考
以下是Python代码实现该选股策略:
import pandas as pd
from typing import List
from datetime import datetime, timedelta
def select_stock(data: pd.DataFrame, n=10) -> List[str]:
selected_stocks = []
for code, df in data.groupby(level=0):
df = df.sort_values('trade_time', ascending=True)
if (df['float_shares'].iloc[-1] / 1000000000 <= 100) and (df['close'].iloc[-1] > 5) and \
(df['volume'].iloc[-1] / df['volume'].iloc[-6:-1].mean() > 3) and \
(df['turnover_rate'].iloc[-1] > 3) and (df['turnover_rate'].iloc[-1] < 12) and \
(df['pct_chg'].iloc[-1] * abs(df['buy_volume'].iloc[-1] - df['sell_volume'].iloc[-1]) / 10000 > 0) and \
(df['industry'].iloc[-1].find('机器人') != -1) and (df['float_market_value'].iloc[-1] / 100000000 <= 100):
s_weight = df['turnover_rate'].mean() * df['volume'].mean() / (df['close'].iloc[-1] * 10000)
selected_stocks.append((code, s_weight))
selected_stocks.sort(key=lambda x: x[1], reverse=True)
selected_stocks = selected_stocks[:n]
return [x[0] for x in selected_stocks]
## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
select_sentence = '市值小于100亿' #选股语句。
模板如何使用?
点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
## 如果有任何问题请添加 下方的二维码进群提问。


