问财量化选股策略逻辑
选股逻辑为:选择换手率在3%~12%之间、买一量大于卖一量的股票,按个股热度从大到小排序。
选股逻辑分析
该选股策略主要考虑了股票的市场活跃度和市场参与度,通过选股筛选出市场活跃度较高的股票,同时也通过个股热度排序,选出市场参与度高的股票。
有何风险?
该选股策略只考虑了几个特定指标,没有考虑技术分析指标、市场情绪等因素的影响,因此其选股结果可能存在一定的盲区。
如何优化?
可以引入其他基本面、技术分析指标、市场情绪等指标,如市净率、财务报表、企业新闻、资金流向等,结合机器学习和大数据等技术优化模型,提高选股效果。
最终的选股逻辑
在换手率在3%~12%之间、买一量大于卖一量的股票中,按个股热度从大到小排序,选出前50个股票。
同花顺指标公式代码参考
SELECT STOCKCODE FROM (
SELECT STOCKCODE FROM BLOCK_STOCK WHERE BLOCKID = 'HS300'
AND STOCKCODE IN (SELECT STOCK_CODE FROM STOCK_BASIC WHERE MARKET='主板' AND LIST_STATUS='上市' AND IS_ST=0 AND IS_OPEN='1')
AND STOCKCODE IN
(SELECT STOCK_CODE FROM SDB WHERE NAME = '买一' AND (CAST(DATA AS NUMBER) > CAST(FDATA AS NUMBER)))
AND STOCKCODE IN (SELECT STOCK_CODE FROM GDH WHERE NAME = '换手率' AND (CAST(DATA AS NUMBER) > 3) AND (CAST(DATA AS NUMBER) < 12)))
ORDER BY (SELECT AVG(DATA) AS AVG_RQSB FROM (SELECT DATA FROM SDB WHERE STOCK_CODE=A.STOCKCODE AND NAME='资金流向' AND NAME_DESC='日前收买' ORDER BY DATE. DESC) WHERE ROWNUM<=5) DESC
WHERE ROWNUM <= 50;
python代码参考
import pandas as pd
import tushare as ts
def select_stocks():
pro = ts.pro_api()
# 查询挂单大量大于卖单的股票
market_df = pro.market_detail(symbol='', trade_date='20220422')
df1 = market_df[(market_df['bid_vol'] > market_df['ask_vol'])]
# 按换手率筛选股票
daily_basic_df = pro.daily_basic(ts_code='', trade_date='20220421', fields='ts_code,turnover_rate')
df1 = pd.merge(df1, daily_basic_df, on='ts_code', how='inner')
df1 = df1[(df1['turnover_rate'] > 3) & (df1['turnover_rate'] < 12)]
# 按市场筛选股票
df1 = df1[df1['ts_code'].str.startswith(('0', '3', '6'))]
# 按买卖盘挂单量筛选股票
sdb_df = pro.stk_holdernumber(ts_code='', start_date='20220420', end_date='20220420', fields='ts_code,mkv')
sdb_df.rename(columns={'ts_code': 'symbol'}, inplace=True)
df1 = pd.merge(df1, sdb_df, on='symbol', how='inner')
df1 = df1[(df1['buy_sm_vol'] > df1['sell_sm_vol']) & (df1['buy_sm_vol'] > df1['mkv'])]
# 按个股热度排序
sdb_df = pro.moneyflow(ts_code='', start_date='20220420', end_date='20220420', fields='ts_code,rqsb')
sdb_df = sdb_df.groupby('ts_code').mean().sort_values(by='rqsb', ascending=False)[:50]
df1 = pd.merge(df1, sdb_df, on='ts_code', how='inner')
# 合并所有指标,按个股热度从大到小排序,返回选股结果
return df1.sort_values('rqsb', ascending=False)[:50]['ts_code']
## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
select_sentence = '市值小于100亿' #选股语句。
模板如何使用?
点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
## 如果有任何问题请添加 下方的二维码进群提问。


