需要帮助?

试试AI小助手吧

(supermind量化策略)task17/a/换手率3%-12%、买一量>卖一量、20日

用户头像神盾局量子研究部
2023-08-30 发布

问财量化选股策略逻辑

选股逻辑为:选择换手率在3%~12%之间、买一量大于卖一量、20日均线大于120日均线的股票。

选股逻辑分析

该选股策略主要从交易活跃度、市场参与度、技术面等角度综合考虑,选取具有一定上涨潜力的股票。

有何风险?

该选股策略也相对简单,没有考虑公司基本面、宏观经济等因素对股票表现的影响,所以选出的股票也具有一定的盲目风险。此外,该选股策略选股的样本量较小,可能存在选股不稳定的风险。

如何优化?

除了选股时考虑交易活跃度和技术面外,额外加入公司基本面、宏观经济、行业环境等因素进行选股筛选,可以提高筛选出有较好表现的股票的概率。

最终的选股逻辑

在换手率在3%~12%之间,买一量大于卖一量,20日均线大于120日均线的股票中,按照涨幅从高到低排序,选取前50只股票。

同花顺指标公式代码参考

SELECT A.SYMBOL FROM (
    SELECT SYMBOL FROM GDH WHERE NAME = '换手率' 
    AND (CAST(DATA AS NUMBER) > 3) AND (CAST(DATA AS NUMBER) < 12)
    AND SYMBOL IN (SELECT STOCK_CODE FROM STOCK_BASIC WHERE MARKET = '主板' AND LIST_STATUS = '上市')
    AND SYMBOL IN (SELECT STOCK_CODE FROM SDB WHERE NAME = '买一' AND CAST(DATA AS NUMBER) > CAST(FDATA AS NUMBER))
    AND SYMBOL IN (SELECT SYMBOL FROM MA WHERE NAME = 'MA20' AND ID = 'DAY' AND (CAST(DATA AS NUMBER) > CAST(FDATA AS NUMBER)))
    AND SYMBOL IN (SELECT SYMBOL FROM MA WHERE NAME = 'MA120' AND ID = 'DAY' AND (CAST(DATA AS NUMBER) > CAST(FDATA AS NUMBER)))
) A 
LEFT JOIN (
    SELECT SYMBOL FROM (
        SELECT SYMBOL, SUM(HOLD_RATIO) RATIO FROM STOCK_HOLDERS WHERE TRADE_DATE = '2022-04-22' 
        GROUP BY SYMBOL HAVING SUM(HOLD_RATIO) > 0.2
    )
) B ON A.SYMBOL = B.SYMBOL 
WHERE B.SYMBOL IS NULL
ORDER BY A.CHG DESC
WHERE ROWNUM <= 50;

python代码参考

import pandas as pd
import tushare as ts

def select_stocks():
    pro = ts.pro_api()

    # 查询挂单大量大于卖单的股票
    market_df = pro.market_detail(symbol='', trade_date='20220422')
    df1 = market_df[(market_df['bid_vol'] > market_df['ask_vol'])]
    df1 = df1[df1['ts_code'].str.startswith('0')]

    # 查询20日均线和120日均线
    ma_df = pro.moving_average(ts_code='', start_date='20220411', end_date='20220422', fields='ts_code,ma20,ma120')
    ma_df1 = ma_df[ma_df['ma20'] > ma_df['ma120']]
    df1 = pd.merge(df1, ma_df1, on='ts_code', how='inner')

    # 查询股票持股分布情况
    stock_holder_df = pro.stk_holdernumber(ts_code='', start_date='20220422', end_date='20220422', fields='ts_code,sum_ratio')
    stock_holder_df = stock_holder_df.groupby(['ts_code']).sum()
    stock_holder_df.reset_index(inplace=True)

    # 根据股票持股分布情况筛选股票
    df1 = pd.merge(df1, stock_holder_df, on='ts_code', how='left')
    df1 = df1[(df1['sum_ratio'] < 0.2) | (df1['sum_ratio'].isnull())]

    # 按换手率筛选股票
    daily_basic_df = pro.daily_basic(ts_code='', trade_date='20220421', fields='ts_code,turnover_rate')
    df1 = pd.merge(df1, daily_basic_df, on='ts_code', how='inner')
    df1 = df1[(df1['turnover_rate'] > 3) & (df1['turnover_rate'] < 12)]

    # 按市场筛选股票
    df1 = df1[df1['ts_code'].str.startswith('0')]

    # 按买卖盘挂单量筛选股票
    sdb_df = pro.stk_holdernumber(ts_code='', start_date='20220420', end_date='20220420', fields='ts_code,mkv')
    sdb_df.rename(columns={'ts_code': 'symbol'}, inplace=True)
    df1 = pd.merge(df1, sdb_df, on='symbol', how='inner')
    df1 = df1[(df1['buy_sm_vol'] > df1['sell_sm_vol']) & (df1['buy_sm_vol'] > df1['mkv'])]

    # 按涨幅排序
    df1 = df1.sort_values('pct_chg', ascending=False)

    # 合并所有指标,返回选股结果
    return df1[:50]['ts_code']
    ## 如何进行量化策略实盘?
    请把您优化好的选股语句放入文章最下面模板的选股语句中即可。

    select_sentence = '市值小于100亿' #选股语句。

    模板如何使用?

    点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。


    ## 如果有任何问题请添加 下方的二维码进群提问。
    ![94c5cde12014f99e262a302741275d05.png](http://u.thsi.cn/imgsrc/pefile/94c5cde12014f99e262a302741275d05.png)
收益&风险
源码

评论