问财量化选股策略逻辑
选股逻辑为:选择换手率在3%-12%之间、归属母公司股东的净利润(同比增长率)大于20%小于等于100%、未清偿可转债简称不可为空的股票。
选股逻辑分析
该选股策略注重公司的盈利能力和市场稳定性,同时关注公司债务的情况。选择在相对较活跃、符合财务条件的股票中进行筛选,希望以短线操作获得较高的收益。
有何风险?
该选股策略可能忽略公司的其他基本面因素,同时未清偿可转债简称不可为空的要求也存在一定的主观性和风险。另外,如果债务大幅增加或者公司未来盈利能力有下滑风险,仅凭债务数据筛选股票可能造成一定的误判。
如何优化?
可以结合其他基本面指标进行综合评估,同时对于债务数据的筛选可以引入更多的控制标准,例如剩余期限、偿债能力等指标。同时,还可以考虑增加技术指标进行筛选,如RSI指标、动量指标等,以更全面地评估股票走势和市场风险。
最终的选股逻辑
选择换手率在3%-12%之间、归属母公司股东净利润(同比增长率)大于20%,小于等于100%、未清偿可转债简称不可为空的股票。
同花顺指标公式代码参考
SET_CHINESE_CHARSET("UTF-8"); // 设置编码
SET_MEM_LINE(0,1,2,3,4); // 记录选股结果
/* 选择换手率在3%-12%之间 */
CONDITION1 = HSL>=3.0 AND HSL<=12.0;
/* 选择归属母公司股东净利润(同比增长率)大于20%,小于等于100% */
CONDITION2 = ZLRTB20>=20.0 AND ZLRTB20<=100.0;
/* 未清偿可转债简称不为空 */
CONDITION3 = ZQJC<>"";
LAST_CONDITION = LAST_CONDITION AND CONDITION1 AND CONDITION2 AND CONDITION3 ;
SET_RANK_BY_FIELD(4, 1, 1); // 按热度从大到小排序
CODE_LIST = SELECT_BY_KIND_EX('stock', last_condition, '', '', '', '', '', '', '', '1');
python代码参考
import baostock as bs
import pandas as pd
from datetime import datetime, timedelta
#### 登陆系统 ####
lg = bs.login()
#### 获取满足条件的股票 #####
rs = bs.query_all_stock(day=datetime.now().strftime("%Y-%m-%d"))
stock_list = []
for i in range(2):
if i == 0:
time_str = datetime.now().strftime("%Y-%m-%d")
else:
time_str = (datetime.now()-timedelta(days=1)).strftime("%Y-%m-%d")
for code in rs.get_row_data():
if code.startswith('sh.688') or code.startswith('sz.300'):
continue
# 换手率3%-12%
k_data = bs.query_history_k_data_plus(code, "date,open,high,low,close,volume", start_date=time_str, end_date=time_str, frequency="d")
if k_data.error_code == '0' and len(k_data.data)>0:
check_point1 = k_data.data[0][5]>=3 and k_data.data[0][5]<=12
else:
continue
# 利润增长率大于20%,小于等于100%
data_profit = bs.query_profit_data(code, year=2021, quarter=1)
if data_profit.error_code == '0' and len(data_profit.data)>0:
check_point2 = data_profit.data[0][16]>=20 and data_profit.data[0][16]<=100
else:
continue
# 未清偿可转债简称不为空
data_entitlement = bs.query_entitlement_data(code, rightsType="0")
if data_entitlement.error_code == '0' and len(data_entitlement.data)>0:
check_point3 = True if len(data_entitlement.data[0][2])>0 else False
else:
continue
# 筛选出符合条件的股票
if check_point1 and check_point2 and check_point3:
data_list = []
data_list.append(code)
data_list.append(k_data.data[0][5]) # 换手率
stock_list.append(data_list)
df = pd.DataFrame(stock_list, columns=['code', 'turn'])
df = df.sort_values(by='turn', ascending=True)
df_length = len(df)
if df_length > 0:
print(df.head(5))
##### 登出系统 #####
bs.logout()
## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
select_sentence = '市值小于100亿' #选股语句。
模板如何使用?
点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
## 如果有任何问题请添加 下方的二维码进群提问。
