(supermind量化策略)task17/a/换手率3%-12%、涨跌幅×超大单净量、北

用户头像神盾局量子研究部
2023-08-30 发布

问财量化选股策略逻辑

选股逻辑:选择换手率在3%到12%之间,涨跌幅乘以超大单净量大于0,同时排除北京A股。

选股逻辑分析

该选股策略在前一个策略基础上增加了排除北京A股的筛选条件,以排除这一地区潜在的投资风险。同时继续考虑换手率和上涨空间等选股因素,以期望在潜在股票中寻找具有投资价值的标的。

有何风险?

排除北京A股的筛选条件可能会漏掉一些具有潜在价值的标的,同时该选股策略中的指标筛选条件可能会对某些行业不适用,也可能存在指标过于简单的问题。

如何优化?

可以加入更多与基本面相关的指标,如市盈率、市净率、股息率等,以更全面地考虑选股因素。同时,应该对股票的所处行业进行适当的分析,选择更具有竞争力的标的。此外,也可以采用技术分析等方法以提高选股精准度。

最终的选股逻辑

选择换手率在3%到12%之间,涨跌幅乘以超大单净量大于0,同时排除北京A股为选股范围。

同花顺指标公式代码参考

以下是同花顺指标所需公式:

选股公式:
-- 计算涨跌幅乘以超大单净量
SuperVolume: (C*Big)/10000;

-- 计算选股
SELECT STOCK_SYMBOL FROM (
    SELECT STOCK_SYMBOL AS code, (C1 / C0) * SuperVolume AS Score FROM 
        (
            SELECT STOCK_SYMBOL AS code, CLOSE AS C0 FROM CandlesMin WHERE Cdl[:1] = LAST AND TIME = [TIME-1] AND Year(DATE) = YEAR(TODAY)
        ) ST,
        (
            SELECT STOCK_SYMBOL AS code, CLOSE AS C1 FROM CandlesMin WHERE Cdl[:1] = LAST AND TIME = [TIME-0] AND Year(DATE) = YEAR(TODAY)
        ) MT,
        (
            SELECT STOCK_SYMBOL AS code, BUY_VOL_L_VOL AS Big FROM CandlesDay WHERE Cdl[:1] = LAST AND TIME = [TIME-1] AND Year(DATE) = YEAR(TODAY) AND VOL >= 1000000 
        ) BT,
        (
            SELECT STOCK_SYMBOL AS code FROM StkBasInfo WHERE MarketValue < 10000000000 AND Industry NOT LIKE '%亏损%' AND FINFOURL NOT NULL AND Area != '北京'
        ) SI
        WHERE ST.code = MT.code AND MT.code = BT.code AND BT.code = SI.code AND ST.O / MA10 >= 0.98 AND ST.O / MA10 <= 1.02 AND Score > 0
        ORDER BY Score DESC
        LIMIT 10

Python代码参考

以下是Python代码实现该选股策略:

import pandas as pd
from typing import List
from datetime import datetime, timedelta

def select_stock(data: pd.DataFrame, n=10) -> List[str]:
    selected_stocks = []
    for code, df in data.groupby(level=0):
        df = df.sort_values('trade_time', ascending=True)
        if (df['float_shares'].iloc[-1] / 1000000000 <= 100) and (df['close'].iloc[-1] > 5) and \
           (df['volume'].iloc[-1] / df['volume'].iloc[-6:-1].mean() > 3) and \
           (df['turnover_rate'].iloc[-1] > 3) and (df['turnover_rate'].iloc[-1] < 12) and \
           (df['pct_chg'].iloc[-1] * abs(df['buy_volume'].iloc[-1] - df['sell_volume'].iloc[-1]) / 10000 > 0) and \
           ((df['close'].iloc[-1] / df['close'].iloc[-11]) > 0 and (df['close'].iloc[-1] / df['close'].iloc[-11]) < 0.35) and \
           (df['area'].iloc[-1] != '北京') and \
           (df['industry'].iloc[-1].find('亏损') == -1):
            s_weight = df['turnover_rate'].mean() * df['volume'].mean() / (df['close'].iloc[-1] * 10000)
            selected_stocks.append((code, s_weight))
    selected_stocks.sort(key=lambda x: x[1], reverse=True)
    selected_stocks = selected_stocks[:n]
    return [x[0] for x in selected_stocks]
    ## 如何进行量化策略实盘?
    请把您优化好的选股语句放入文章最下面模板的选股语句中即可。

    select_sentence = '市值小于100亿' #选股语句。

    模板如何使用?

    点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。


    ## 如果有任何问题请添加 下方的二维码进群提问。
    ![94c5cde12014f99e262a302741275d05.png](http://u.thsi.cn/imgsrc/pefile/94c5cde12014f99e262a302741275d05.png)
收益&风险
源码

评论