(supermind量化策略)task17/a/换手率3%-12%、买一量>卖一量、9点2

用户头像神盾局量子研究部
2023-08-30 发布

问财量化选股策略逻辑

选股逻辑为:在换手率在3%~12%之间、买一量大于卖一量、开盘前15分钟内涨幅小于6%。

选股逻辑分析

该选股策略主要考虑了股票的流动性、市值以及短期市场的热度。换手率与买卖盘挂单量的考虑,提高了选股的可靠性。同时,开盘前15分钟的涨幅对应当前市场的热度,过高的升幅表明该股票存在过热的风险,因此在涨幅小于6%的情况下选取股票,有更大概率能够在较短时间内获得收益。

有何风险?

该策略强调短期热点因素,对个股的长期走势和内在价值因素考虑不足。同时,在开盘前选择股票,可能会导致由于收盘价等因素与选股时期存在一定偏差,影响收益。

如何优化?

可以加入PE、PB等基本面指标考虑股票的长期确定性。同时,可以逐渐延长选股的时间窗口,在市场状况合适的情况下进行持仓。

最终的选股逻辑

在换手率在3%~12%之间、买一量大于卖一量、开盘前15分钟内涨幅小于6%选取股票。

同花顺指标公式代码参考

SELECT SYMBOL FROM GDH WHERE NAME = '换手率' 
AND (CAST(DATA AS NUMBER) > 3) AND (CAST(DATA AS NUMBER) < 12)
AND SYMBOL IN (SELECT STOCK_CODE FROM STOCK_BASIC WHERE LIST_STATUS = '上市' AND MARKET_TYPE = '1' AND LIQUIDITY > 1)
AND SYMBOL IN (SELECT STOCK_CODE FROM SDB WHERE NAME = '买一' AND CAST(DATA AS NUMBER) > CAST(FDATA AS NUMBER))
AND SYMBOL IN (SELECT STOCK_CODE FROM LCAP WHERE CAST(DATA AS NUMBER) > 100)
AND SYMBOL IN 
  (SELECT STOCK_CODE FROM TICK 
  WHERE TRADE_TIME = '0925' AND (CAST(CURRENT_PRICE AS NUMBER) - CAST(PRE_CLOSE_PRICE AS NUMBER))/CAST(PRE_CLOSE_PRICE AS NUMBER) < 0.06);

python代码参考

import pandas as pd
import tushare as ts

def select_stocks(date):
    pro = ts.pro_api()

    # 查询挂单大量大于卖单的股票
    market_df = pro.market_detail(symbol='', trade_date=date, fields='ts_code,bid_vol,ask_vol,last_price,pre_close')
    df1 = market_df[(market_df['bid_vol'] > market_df['ask_vol'])]

    # 按流通市值和市场筛选股票
    lc_df = pro.daily_basic(ts_code='', trade_date=date, fields='ts_code,circ_mv')
    df1 = pd.merge(df1, lc_df, on='ts_code', how='inner')
    df1 = df1[(df1['circ_mv'] > 10000000000)]

    basic_df = pro.stock_basic(exchange='', list_status='L', fields='ts_code,market')
    df1 = pd.merge(df1, basic_df, on='ts_code', how='inner')
    df1 = df1[df1['market'] == '主板']

    # 按买卖盘挂单量筛选股票
    sdb_df = pro.stk_holdernumber(ts_code='', start_date=date, end_date=date, fields='ts_code,mkv')
    sdb_df.rename(columns={'ts_code': 'symbol'}, inplace=True)
    df1 = pd.merge(df1, sdb_df, on='symbol', how='inner')
    df1 = df1[(df1['buy_sm_vol'] > df1['sell_sm_vol']) & (df1['buy_sm_vol'] > df1['mkv'])]

    # 按照开盘前15分钟的涨幅筛选股票
    tick_df = pro.query('tick', trade_date=date, start_time='09:25:00', end_time='09:40:00', fields='ts_code,last_price,pre_close')
    tick_df['pct_chg'] = (tick_df['last_price'] - tick_df['pre_close']) / tick_df['pre_close']
    df1 = pd.merge(df1, tick_df, on='ts_code', how='inner')
    df1 = df1[(df1['pct_chg'] < 0.06)]

    # 返回选股结果
    return df1['ts_code']
    ## 如何进行量化策略实盘?
    请把您优化好的选股语句放入文章最下面模板的选股语句中即可。

    select_sentence = '市值小于100亿' #选股语句。

    模板如何使用?

    点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。


    ## 如果有任何问题请添加 下方的二维码进群提问。
    ![94c5cde12014f99e262a302741275d05.png](http://u.thsi.cn/imgsrc/pefile/94c5cde12014f99e262a302741275d05.png)
收益&风险
源码

评论