问财量化选股策略逻辑
选股逻辑:选择换手率在3%到12%之间,涨跌幅乘以超大单净量大于0,且KDJ刚形成金叉的股票为选股范围。
选股逻辑分析
该选股逻辑综合考虑了股票的交易活跃程度、市场情绪和热点、股价走势以及技术指标等因素。在满足涨跌幅乘以超大单净量和换手率的基础上,特别关注了股票KDJ技术指标的变化,通过判断KDJ是否形成金叉,进一步筛选出优质股票。
有何风险?
可能会漏掉一些短期市场趋势较弱但未来发展潜力较大的股票,同时对技术指标的选取也可能存在较大主观性和滞后性。由于是采用 KDJ金叉来判断市场趋势,所以可能存在较大的市场风险,即行情在趋势转变时,KDJ指标出现滞后性。
如何优化?
可以考虑加入更多技术指标作为选股条件,如MACD、RSI等指标,可以通过机器学习等方法来进行参数优化,减少主观性和滞后性等问题,提高选股精度。此外,还可以关注股票的基本面数据、市场预测数据等,综合考量股票的价值潜力和未来发展趋势,减少单一指标对股票的影响。
最终的选股逻辑
选择换手率在3%到12%之间,涨跌幅乘以超大单净量大于0,且KDJ刚形成金叉的股票为选股范围。
同花顺指标公式代码参考
以下是同花顺指标所需公式:
选股公式:
-- 计算涨跌幅乘以超大单净量
SuperVolume: (C*Big)/10000;
-- 计算KDJ指标
RSV:=(CLOSE-LOWEST(CLOSE,9))/(HIGHEST(CLOSE,9)-LOWEST(CLOSE,9))*100;
K:SMA(RSV,3,1);
D:SMA(K,3,1);
J:3*K-2*D;
-- 计算选股
SELECT STOCK_SYMBOL FROM (
SELECT STOCK_SYMBOL AS code, (C1 / C0) * SuperVolume AS Score FROM
(
SELECT STOCK_SYMBOL AS code, CLOSE AS C0 FROM CandlesMin WHERE Cdl[:1] = LAST AND TIME = [TIME-1]
) ST,
(
SELECT STOCK_SYMBOL AS code, CLOSE AS C1, K, D, J FROM CandlesMin WHERE Cdl[:1] = LAST AND TIME = [TIME-0]
) MT,
(
SELECT STOCK_SYMBOL AS code, VOL AS Vol FROM CandlesMin WHERE Cdl[:1] = LAST AND TIME = [TIME-0]
) VT,
(
SELECT STOCK_SYMBOL AS code, BUY_VOL_L_VOL AS Big FROM CandlesDay WHERE Cdl[:1] = LAST AND TIME = [TIME-1]
) BT
WHERE ST.code = MT.code AND MT.code = VT.code AND VT.code = BT.code AND MT.K > MT.D AND ST.O / MA10 >= 0.98 AND ST.O / MA10 <= 1.02 AND VOL >= 1000000 AND Score > 0 AND C1 >= 5
ORDER BY Score DESC
LIMIT 10
Python代码参考
以下是Python代码实现该选股逻辑:
import pandas as pd
from typing import List
from datetime import datetime, timedelta
import talib
def select_stock(data: pd.DataFrame, n=10) -> List[str]:
selected_stocks = []
for code, df in data.groupby(level=0):
df = df.sort_values('trade_time', ascending=True)
kdj = talib.STOCH(df['high'], df['low'], df['close'], fastk_period=9, slowk_period=3, slowd_period=3)
if df['dt'].iloc[-1] and \
(df['float_shares'].iloc[-1] / 1000000000 <= 5.5) and \
(df['volume'].iloc[-1] / df['volume'].iloc[-6:-1].mean() > 3) and \
(df['turnover_rate'].iloc[-1] > 3) and (df['turnover_rate'].iloc[-1] < 12) and \
(df['pct_chg'].iloc[-1] * abs(df['buy_volume'].iloc[-1] - df['sell_volume'].iloc[-1]) / 10000 > 0) and \
(kdj[0][-1] > kdj[1][-1]) and (kdj[0][-2] <= kdj[1][-2]):
s_weight = df['turnover_rate'].mean() * df['volume'].mean() / (df['close'].iloc[-1] * 10000)
selected_stocks.append((code, s_weight))
selected_stocks.sort(key=lambda x: x[1], reverse=True)
selected_stocks = selected_stocks[:n]
return [x[0] for x in selected_stocks]
## 如何进行量化策略实盘?
请把您优化好的选股语句放入文章最下面模板的选股语句中即可。
select_sentence = '市值小于100亿' #选股语句。
模板如何使用?
点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。
## 如果有任何问题请添加 下方的二维码进群提问。


