(supermind量化策略)task17/a/换手率3%-12%、涨跌幅×超大单净量、K

用户头像神盾局量子研究部
2023-08-30 发布

问财量化选股策略逻辑

选股逻辑:选择换手率在3%到12%之间,涨跌幅乘以超大单净量大于0,且KDJ刚形成金叉的股票为选股范围。

选股逻辑分析

该选股逻辑综合考虑了股票的交易活跃程度、市场情绪和热点、股价走势以及技术指标等因素。在满足涨跌幅乘以超大单净量和换手率的基础上,特别关注了股票KDJ技术指标的变化,通过判断KDJ是否形成金叉,进一步筛选出优质股票。

有何风险?

可能会漏掉一些短期市场趋势较弱但未来发展潜力较大的股票,同时对技术指标的选取也可能存在较大主观性和滞后性。由于是采用 KDJ金叉来判断市场趋势,所以可能存在较大的市场风险,即行情在趋势转变时,KDJ指标出现滞后性。

如何优化?

可以考虑加入更多技术指标作为选股条件,如MACD、RSI等指标,可以通过机器学习等方法来进行参数优化,减少主观性和滞后性等问题,提高选股精度。此外,还可以关注股票的基本面数据、市场预测数据等,综合考量股票的价值潜力和未来发展趋势,减少单一指标对股票的影响。

最终的选股逻辑

选择换手率在3%到12%之间,涨跌幅乘以超大单净量大于0,且KDJ刚形成金叉的股票为选股范围。

同花顺指标公式代码参考

以下是同花顺指标所需公式:

选股公式:
-- 计算涨跌幅乘以超大单净量
SuperVolume: (C*Big)/10000;

-- 计算KDJ指标
RSV:=(CLOSE-LOWEST(CLOSE,9))/(HIGHEST(CLOSE,9)-LOWEST(CLOSE,9))*100;
K:SMA(RSV,3,1);
D:SMA(K,3,1);
J:3*K-2*D;

-- 计算选股
SELECT STOCK_SYMBOL FROM (
    SELECT STOCK_SYMBOL AS code, (C1 / C0) * SuperVolume AS Score FROM 
        (
            SELECT STOCK_SYMBOL AS code, CLOSE AS C0 FROM CandlesMin WHERE Cdl[:1] = LAST AND TIME = [TIME-1]
        ) ST,
        (
            SELECT STOCK_SYMBOL AS code, CLOSE AS C1, K, D, J FROM CandlesMin WHERE Cdl[:1] = LAST AND TIME = [TIME-0]
        ) MT,
        (
            SELECT STOCK_SYMBOL AS code, VOL AS Vol FROM CandlesMin WHERE Cdl[:1] = LAST AND TIME = [TIME-0]
        ) VT,
        (
            SELECT STOCK_SYMBOL AS code, BUY_VOL_L_VOL AS Big FROM CandlesDay WHERE Cdl[:1] = LAST AND TIME = [TIME-1]
        ) BT
        WHERE ST.code = MT.code AND MT.code = VT.code AND VT.code = BT.code AND MT.K > MT.D AND ST.O / MA10 >= 0.98 AND ST.O / MA10 <= 1.02 AND VOL >= 1000000 AND Score > 0 AND C1 >= 5 
        ORDER BY Score DESC
        LIMIT 10

Python代码参考

以下是Python代码实现该选股逻辑:

import pandas as pd
from typing import List
from datetime import datetime, timedelta
import talib

def select_stock(data: pd.DataFrame, n=10) -> List[str]:
    selected_stocks = []
    for code, df in data.groupby(level=0):
        df = df.sort_values('trade_time', ascending=True)
        kdj = talib.STOCH(df['high'], df['low'], df['close'], fastk_period=9, slowk_period=3, slowd_period=3)
        if df['dt'].iloc[-1] and \
           (df['float_shares'].iloc[-1] / 1000000000 <= 5.5) and \
           (df['volume'].iloc[-1] / df['volume'].iloc[-6:-1].mean() > 3) and \
           (df['turnover_rate'].iloc[-1] > 3) and (df['turnover_rate'].iloc[-1] < 12) and \
           (df['pct_chg'].iloc[-1] * abs(df['buy_volume'].iloc[-1] - df['sell_volume'].iloc[-1]) / 10000 > 0) and \
           (kdj[0][-1] > kdj[1][-1]) and (kdj[0][-2] <= kdj[1][-2]):
            s_weight = df['turnover_rate'].mean() * df['volume'].mean() / (df['close'].iloc[-1] * 10000)
            selected_stocks.append((code, s_weight))
    selected_stocks.sort(key=lambda x: x[1], reverse=True)
    selected_stocks = selected_stocks[:n]
    return [x[0] for x in selected_stocks]
    ## 如何进行量化策略实盘?
    请把您优化好的选股语句放入文章最下面模板的选股语句中即可。

    select_sentence = '市值小于100亿' #选股语句。

    模板如何使用?

    点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。


    ## 如果有任何问题请添加 下方的二维码进群提问。
    ![94c5cde12014f99e262a302741275d05.png](http://u.thsi.cn/imgsrc/pefile/94c5cde12014f99e262a302741275d05.png)
收益&风险
源码

评论