(supermind量化策略)task17/a/换手率3%-12%、买一量>卖一量、昨天换

用户头像神盾局量子研究部
2023-08-30 发布

问财量化选股策略逻辑

选股逻辑为:在换手率在3%~12%之间、买一量大于卖一量、昨天换手率大于8%选取股票。

选股逻辑分析

该选股策略主要考虑了股票的流动性、市值以及前一交易日的市场交易热度。换手率与买卖盘挂单量的考虑,提高了选股的可靠性。同时,昨天换手率大于8%的条件,对应短期市场的活跃程度,通过选取高交易活跃性的股票,有更大概率能够在较短时间内获得收益。

有何风险?

该策略过分追求短线交易机会,对于经营业绩较好的但短期交易不活跃的股票,可能会选择错过。同时,昨天换手率作为一天前的数据可能存在时间滞后的问题。

如何优化?

可以加入PE、PB等基本面指标考虑股票的长期确定性。同时,可以考虑选取长期稳定的标的,降低无谓的换手率导致的交易费用。可以引入其他短期交易活跃度指标进行筛选,提高选股的可靠性。

最终的选股逻辑

在换手率在3%~12%之间、买一量大于卖一量、昨天换手率大于8%选取股票。

同花顺指标公式代码参考

SELECT SYMBOL FROM GDH WHERE NAME = '换手率' 
AND (CAST(DATA AS NUMBER) > 3) AND (CAST(DATA AS NUMBER) < 12)
AND SYMBOL IN (SELECT STOCK_CODE FROM STOCK_BASIC WHERE LIST_STATUS = '上市' AND MARKET_TYPE = '1' AND LIQUIDITY > 1)
AND SYMBOL IN (SELECT STOCK_CODE FROM SDB WHERE NAME = '买一' AND CAST(DATA AS NUMBER) > CAST(FDATA AS NUMBER))
AND SYMBOL IN 
  (SELECT DISTINCT SYMBOL FROM GDH WHERE NAME = '换手率' 
  AND (CAST(DATA AS NUMBER) > 8) 
  AND TRADE_DATE = (SELECT MAX(TRADE_DATE) FROM GDH WHERE TRADE_DATE < '${TRADE_DATE}' AND NAME = '换手率'));

python代码参考

import pandas as pd
import tushare as ts

def select_stocks(date):
    pro = ts.pro_api()

    # 查询挂单大量大于卖单的股票
    market_df = pro.market_detail(symbol='', trade_date=date, fields='ts_code,bid_vol,ask_vol')
    df1 = market_df[(market_df['bid_vol'] > market_df['ask_vol'])]

    # 按流通市值和市场筛选股票
    lc_df = pro.daily_basic(ts_code='', trade_date=date, fields='ts_code,circ_mv')
    df1 = pd.merge(df1, lc_df, on='ts_code', how='inner')
    df1 = df1[(df1['circ_mv'] > 10000000000)]

    basic_df = pro.stock_basic(exchange='', list_status='L', fields='ts_code,market')
    df1 = pd.merge(df1, basic_df, on='ts_code', how='inner')
    df1 = df1[df1['market'] == '主板']

    # 按买卖盘挂单量筛选股票
    sdb_df = pro.stk_holdernumber(ts_code='', start_date=date, end_date=date, fields='ts_code,mkv')
    sdb_df.rename(columns={'ts_code': 'symbol'}, inplace=True)
    df1 = pd.merge(df1, sdb_df, on='symbol', how='inner')
    df1 = df1[(df1['buy_sm_vol'] > df1['sell_sm_vol']) & (df1['buy_sm_vol'] > df1['mkv'])]

    # 按昨日换手率筛选股票
    gdh_df = pro.daily_basic(ts_code='', trade_date=date, fields='ts_code,trade_date,turnover_rate')
    gdh_df2 = gdh_df[gdh_df['trade_date'] == (pd.to_datetime(date) - pd.Timedelta(days=1)).strftime('%Y%m%d')]
    df1 = pd.merge(df1, gdh_df2, on='ts_code', how='inner')
    df1 = df1[(df1['turnover_rate'] > 8)]

    # 返回选股结果
    return df1['ts_code']
    ## 如何进行量化策略实盘?
    请把您优化好的选股语句放入文章最下面模板的选股语句中即可。

    select_sentence = '市值小于100亿' #选股语句。

    模板如何使用?

    点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。


    ## 如果有任何问题请添加 下方的二维码进群提问。
    ![94c5cde12014f99e262a302741275d05.png](http://u.thsi.cn/imgsrc/pefile/94c5cde12014f99e262a302741275d05.png)
收益&风险
源码

评论