(supermind量化策略)task17/a/换手率3%-12%、涨跌幅×超大单净量、昨

用户头像神盾局量子研究部
2023-08-30 发布

问财量化选股策略逻辑

选股逻辑:选择换手率在3%到12%之间,涨跌幅乘以超大单净量大于0,且昨天在龙虎榜上的股票为选股范围。

选股逻辑分析

该选股逻辑考虑了股票的活跃程度、市场情绪和热点、流通性等因素,同时限制了流通盘的大小,关注股票的交易情况和龙虎榜等信息,与前一个选股逻辑相比增加了龙虎榜作为交易情况的评价指标。

有何风险?

可能会漏掉一些潜在有价值但交易状况不太活跃的股票,而且龙虎榜本身也不一定代表股票的投资价值,有可能过分注重热点而忽略了基本面的变化等情况。另外,在选股逻辑中的流通盘阈值也可能过于严格。

如何优化?

可以考虑增加更多的技术指标、基本面数据、市场预测数据等来评估股票的价值潜力和未来发展趋势,加强对筛选结果的控制和监督,对龙虎榜细化评估,降低流通盘阈值来增加选股池中股票的数量和多样性等。

最终的选股逻辑

选择换手率在3%到12%之间,涨跌幅乘以超大单净量大于0,且昨天在龙虎榜上的股票为选股范围。

同花顺指标公式代码参考

以下是同花顺指标所需公式:

选股公式:
-- 计算涨跌幅乘以超大单净量
SuperVolume: (C*Big)/10000;

-- 筛选昨天在龙虎榜上的股票
SELECT STOCK_SYMBOL FROM (
    SELECT STOCK_SYMBOL FROM MarketActivityLt where listdate<([DATE]) and bs_flag=1
) X

-- 计算选股
SELECT STOCK_SYMBOL FROM (
    SELECT ST.code, (C2 / C1) * SuperVolume AS Score FROM 
        (
            SELECT STOCK_SYMBOL AS code, CLOSE AS C1, NetChangeRatio AS Chg FROM CandlesMin WHERE Cdl[:1] = LAST AND TIME = [TIME-1]
        ) ST,
        (
            SELECT STOCK_SYMBOL AS code, CLOSE AS C2 FROM CandlesMin WHERE Cdl[:1] = LAST AND TIME = [TIME-0]
        ) MT,
        (
            SELECT STOCK_SYMBOL AS code, VOL AS Vol FROM CandlesMin WHERE Cdl[:1] = LAST AND TIME = [TIME-0]
        ) VT,
        (
            SELECT STOCK_SYMBOL AS code, BUY_VOL_L_VOL AS Big FROM CandlesDay WHERE Cdl[:1] = LAST AND TIME = [TIME-1]
        ) BT,
        (
            SELECT STOCK_SYMBOL FROM (
                SELECT STOCK_SYMBOL,TRADE_DATE FROM DragonTigerList WHERE TRADEDATE=PREVDAY)
                TDL WHERE TDL.stock_symbol = ST.code
        ) LHB
        WHERE ST.code = MT.code AND MT.code = VT.code AND VT.code = BT.code AND BT.code = LHB.code
        AND ST.code in X 
        AND Chg > 2 
        AND MT.C2 > (ST.C1 * 1.05)
        AND MT.C2 >= 5 
        AND VOL >= VT.VOL_AVG_21DAY AND VOL >= VT.VOL_AVG_5DAY AND VOL >= VT.VOL_AVG_10DAY AND VOL >= VT.VOL_AVG_30DAY AND VOL >= VT.VOL_AVG_60DAY AND VOL >= VT.VOL_AVG_240DAY 
        AND VOL >= VT.VOL_AVG_5DAY * 2 AND VOL >= VT.VOL_AVG_10DAY * 2 AND VOL >= VT.VOL_AVG_21DAY * 2 AND VOL >= VT.VOL_AVG_30DAY * 2 AND VOL >= VT.VOL_AVG_60DAY * 2 
        AND VOL >= VT.VOL_AVG_240DAY * 2 AND VOL >= 1000000 
        AND Stock_Minute_Numerical_Impact(VT.code, [TIME]) > 100
        AND Chg < 20 
        ORDER BY Score DESC
        LIMIT 10

Python代码参考

以下是Python代码实现该选股逻辑:

import pandas as pd
from typing import List
from datetime import datetime, timedelta
import talib

def select_stock(data: pd.DataFrame, n=10) -> List[str]:
    selected_stocks = []
    for code, df in data.groupby(level=0):
        df = df.sort_values('trade_time', ascending=True)
        net_amount_ratio = df['net_amount'].iloc[-1] / df['volume'].iloc[-1]
        if df['dt'].iloc[-1] and \
           (df['float_shares'].iloc[-1] / 1000000000 <= 5.5) and \
           (df['turnover_rate'].iloc[-2] > 8) and (df['turnover_rate'].iloc[-2] < 20) and \
           (df['turnover_rate'].iloc[-1] > 3) and (df['turnover_rate'].iloc[-1] < 12) and \
           (df['pct_chg'].iloc[-1] * net_amount_ratio > 0):
            s_weight = df['turnover_rate'].mean() * df['volume'].mean() / (df['close'].iloc[-1] * 10000)
            selected_stocks.append((code, s_weight))
    selected_stocks.sort(key=lambda x: x[1], reverse=True)
    selected_stocks = selected_stocks[:n]
    return [x[0] for x in selected_stocks]
    ## 如何进行量化策略实盘?
    请把您优化好的选股语句放入文章最下面模板的选股语句中即可。

    select_sentence = '市值小于100亿' #选股语句。

    模板如何使用?

    点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。


    ## 如果有任何问题请添加 下方的二维码进群提问。
    ![94c5cde12014f99e262a302741275d05.png](http://u.thsi.cn/imgsrc/pefile/94c5cde12014f99e262a302741275d05.png)
收益&风险
源码

评论