(supermind量化策略)task17/a/换手率3%-12%、饮料酒进出口、今日均线

用户头像神盾局量子研究部
2023-08-30 发布

问财量化选股策略逻辑

选股逻辑为:选择换手率在3%-12%、饮料酒进出口、今日均线向上发散的股票。

选股逻辑分析

该策略综合考虑了行业、换手率及技术面因素,选出了换手率适中的饮料酒类股票,且今日均线向上发散,具有一定的技术上涨潜力。

有何风险?

该策略过于侧重于技术面和行业板块,忽略了公司基本面和财务数据等重要因素,存在投资风险。同时,技术指标容易被市场短期消息和情绪影响,难以保证选出的股票会持续上涨。

如何优化?

可以结合公司基本面、财务数据等因素,更全面地挖掘股票的潜力。同时,在技术指标的基础上,增加其他指标,如资金流入、相对强弱指标等,提高选股的准确性。

最终的选股逻辑

选择换手率在3%-12%、饮料酒进出口、今日均线向上发散的股票。

同花顺指标公式代码参考

换手率在3%-12%:SELECT(TURN<N>=AVG(TURN, N) AND TURN<N+1>AVG(TURN, N+1) AND TURN<N>3 AND TURN<N<12)
饮料酒进出口:SELECT(SECTORCODE('K40')=1)
今日均线向上发散:SELECT(C>=MA5 AND C>=MA10 AND C>=MA20 AND C>=MA30 AND C>=MA60 AND C>=MA120)
选股:SELECT(CODE, 换手率3%-12% AND SELECT_SECTORCOUNT('K43')>0 AND 今日均线向上发散 AND 饮料酒进出口)

python代码参考

import pandas as pd
import tushare as ts


def select_stocks():
    pro = ts.pro_api()
    df1 = pro.stock_basic(exchange='', list_status='L', fields='ts_code,industry,name')
    df1 = df1[(df1['industry'].str.contains('饮料') & df1['industry'].str.contains('酒'))]
    df2 = pro.daily(ts_code='', trade_date='20211013', fields='ts_code,trade_date,high,low,trade_status')
    df = pd.merge(df2[['ts_code', 'trade_date']], df1[['ts_code']], on='ts_code')
    df3 = pro.daily_basic(ts_code='', trade_date='20211013', fields='ts_code,turnover_rate')
    df = pd.merge(df, df3, on=['ts_code'])
    df = df[(df['turnover_rate']>=3) & (df['turnover_rate']<=12)]
    df4 = pro.daily(ts_code='', trade_date='20211013', fields='ts_code,trade_date,open,high,low,close')
    for i in [5, 10, 20, 30, 60, 120]:
        col_name = 'ma' + str(i)
        df[col_name] = df4.groupby('ts_code')['close'].apply(lambda x: x.rolling(i).mean())
    df = df[(df['close']>=df['ma5']) & (df['close']>=df['ma10']) & (df['close']>=df['ma20']) & (df['close']>=df['ma30']) & (df['close']>=df['ma60']) & (df['close']>=df['ma120'])]
    df = df.groupby('ts_code').tail(1)
    df = pd.merge(df, df3[['ts_code', 'turnover_rate']], on=['ts_code'])
    df1 = pro.daily(ts_code='', trade_date='20211014', fields='ts_code,trade_date,open,high,low,close')
    for i in [5, 10, 20, 30, 60, 120]:
        col_name = 'ma' + str(i)
        df1[col_name] = df1.groupby('ts_code')['close'].apply(lambda x: x.rolling(i).mean())
    df1 = df1[(df1['close']>=df1['ma5']) & (df1['close']>=df1['ma10']) & (df1['close']>=df1['ma20']) & (df1['close']>=df1['ma30']) & (df1['close']>=df1['ma60']) & (df1['close']>=df1['ma120'])]
    df = pd.merge(df, df1[['ts_code', 'close']], on='ts_code', suffixes=('', '_today'))
    df = df[(df['close_today']>df['ma5_today']) & (df['close_today']>df['ma10_today']) & (df['close_today']>df['ma20_today']) & (df['close_today']>df['ma30_today']) & (df['close_today']>df['ma60_today']) & (df['close_today']>df['ma120_today'])]
    return df['ts_code']
    ## 如何进行量化策略实盘?
    请把您优化好的选股语句放入文章最下面模板的选股语句中即可。

    select_sentence = '市值小于100亿' #选股语句。

    模板如何使用?

    点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。


    ## 如果有任何问题请添加 下方的二维码进群提问。
    ![94c5cde12014f99e262a302741275d05.png](http://u.thsi.cn/imgsrc/pefile/94c5cde12014f99e262a302741275d05.png)
收益&风险
源码

评论