(supermind量化策略)task17/a/换手率3%-12%、今日上涨>1主板、主升

用户头像神盾局量子研究部
2023-08-30 发布

问财量化选股策略逻辑

选股逻辑为:选择换手率在3%-12%之间、今日上涨幅度大于1%(比较同板块的股票涨幅)、主升起动的主板股票。

选股逻辑分析

该选股逻辑除了注重技术面外,加入了对于主升起动的判断,更加注重选股的稳定性和可靠性。同时,将股票选择范围限定在主板上,减少了选择垃圾股的风险。

有何风险?

该策略可能会略过一些潜力较大的股票。同时,股票的短线波动也可能会影响选股结果。主升起动的判断也可能存在一定的误差。

如何优化?

可以适当调整选股条件,并尝试加入基本面因素如公司财务情况、行业地位等等,使选择更具综合性。同时,可以增加其他技术指标的判断来进一步筛选。

最终的选股逻辑

选择换手率在3%-12%之间、今日上涨幅度大于1%(比较同板块的股票涨幅)、主升起动的主板股票。

同花顺指标公式代码参考

SET_STUDY_NAME('升起动');
SET_CHINESE_CHARSET("GBK");
COLORSTICKS = true;
WINDING_N = 4;
MATCH_GROUP = '主板'; // 选股条件
CONDITION1 = HSL >= 3.0 AND HSL <= 12.0; // 换手率在3%-12%之间
CONDITION2 = MAX(CLOSE/REF(CLOSE,1),INDEXPRV(MATCH_GROUP))>1.01; // 今日上涨幅度大于1%

/* 主升起动 */
FRONT_V0 = LLV(LOW,23);
FRONT_V1 = LLV(LOW,46);
BACK_V0 = HHV(HIGH,23);
BACK_V1 = HHV(HIGH,46);
FRONT_RISK = IF(FRONT_V1>FRONT_V0,FRONT_V1+(FRONT_V1-FRONT_V0),FRONT_V1);
BACK_RISK = IF(BACK_V1>BACK_V0,BACK_V1+(BACK_V1-BACK_V0),BACK_V1);
ADVANCE = IF(AMOUNT/HSL > ADVANCE(MATCH_GROUP,FROM=0,TO=23), 1, 0);
BACK = IF(C>REF(REF(LOW,23),1),1,0);
CHECK_BACK = IF(CLOSE>FRONT_RISK AND BACK == 0 AND HHV(BACK)==REF(HHV(BACK),1),1,0);

LAST_CONDITION = CONDITION1 AND CONDITION2 AND CHECK_BACK; // 最终选股逻辑

SET_RANK_FIELD(CHECK_BACK);
SET_SORT_RULE(ASCENDING);
SET_RANK_FIELD(HSL);
SET_SORT_RULE(ASCENDING);

BATCHSELECT(last_condition);

python代码参考

import baostock as bs
import pandas as pd
import talib as ta
from datetime import datetime, timedelta

#### 登陆系统 ####
lg = bs.login()

#### 获取满足条件的股票 #####
rs = bs.query_all_stock(day=datetime.now().strftime("%Y-%m-%d"))
stock_list = []

for code in rs.get_row_data():
    if not code.startswith('sh.') and not code.startswith('sz.'):
        continue
    if code.startswith('sh.688') or code.startswith('sz.300'):
        continue
    if code.startswith('sh.110') or code.startswith('sz.110'):
        continue

    # 换手率 3%-12%
    k_data = bs.query_history_k_data_plus(code, "date,open,high,low,close,volume", start_date=(datetime.now()-timedelta(days=1)).strftime("%Y-%m-%d"), end_date=(datetime.now()-timedelta(days=1)).strftime("%Y-%m-%d"), frequency="d")
    if k_data.error_code == '0' and len(k_data.data)>0:
        check_point1 = k_data.data[0][5]>=3 and k_data.data[0][5]<=12
    else:
        continue

    # 今日涨幅 > 1%
    index_rs = bs.query_history_k_data_plus('sh.000001', 'close', start_date=(datetime.now()-timedelta(days=1)).strftime("%Y-%m-%d"), end_date=(datetime.now()-timedelta(days=1)).strftime("%Y-%m-%d"), frequency='d')
    if index_rs.error_code == '0' and len(index_rs.data)>0:
        index_close = float(index_rs.data[0][0])
    else:
        continue
    k_data_compare = bs.query_history_k_data_plus(code, "date,close", start_date=(datetime.now()-timedelta(days=1)).strftime("%Y-%m-%d"), end_date=(datetime.now()-timedelta(days=1)).strftime("%Y-%m-%d"), frequency="d")
    if k_data_compare.error_code == '0' and len(k_data_compare.data)>0:
        check_point2 = k_data_compare.data[0][1]/index_close-1 > 0.01
    else:
        continue

    # 主升起动
    data_k = bs.query_history_k_data_plus(code, "date,open,high,low,close,volume, amount, amplitude,turn, vr", frequency="d")
    if data_k.error_code == '0' and len(data_k.data)>0:
        k_info = pd.DataFrame(data_k.data, columns=data_k.fields)
        k_info.index = pd.to_datetime(k_info.date)
        advance = ta.MAX(k_info['amount']/k_info['turn'], timeperiod=23)
        close_v1 = ta.LLV(k_info['low'], timeperiod=23)
        back = ta.IF(k_info['close'] > ta.REF(close_v1, 1), 1, 0)
        hhv_back_v1 = ta.SMA((k_info['close'] - ta.REF(close_v1, 1)) / (close_v1 * 0.01), timeperiod=WINDING_N)
        hhv_back_v2 = ta.SMA((k_info['close'] - close_v1)/(close_v1 * 0.01), timeperiod=WINDING_N)
        check_point3 = 0
        if hhv_back_v1[-1] < hhv_back_v2[-1]:
            check_point3 = 1
    else:
        continue

    if check_point1 and check_point2 and check_point3:
        data_list = []
        data_list.append(code)
        stock_list.append(data_list)

df = pd.DataFrame(stock_list, columns=['code'])
df_length = len(df)
if df_length > 0:
    print(df.head(5))

##### 登出系统 #####
bs.logout()
    ## 如何进行量化策略实盘?
    请把您优化好的选股语句放入文章最下面模板的选股语句中即可。

    select_sentence = '市值小于100亿' #选股语句。

    模板如何使用?

    点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。


    ## 如果有任何问题请添加 下方的二维码进群提问。
    ![94c5cde12014f99e262a302741275d05.png](http://u.thsi.cn/imgsrc/pefile/94c5cde12014f99e262a302741275d05.png)
收益&风险
源码

评论