(supermind量化策略)task17/a/换手率3%-12%、涨跌幅×超大单净量、前

用户头像神盾局量子研究部
2023-08-30 发布

问财量化选股策略逻辑

选股逻辑:选择换手率在3%到12%之间,涨跌幅乘以超大单净量大于0,同时前25天中至少有1天有涨停板的股票为选股范围。

选股逻辑分析

该选股逻辑综合考虑了交易活跃程度、市场情绪和热点、股价走势等因素,并特别注重了股票前期的表现情况。通过选取前25天中至少有1天有涨停板的股票,筛选出当前市场中具有强劲市场表现的股票,同时要求股票满足一定的换手率和涨跌幅条件,过滤掉不活跃和不具有足够上涨空间的股票。

有何风险?

该策略只考虑了股票前期表现和短期市场趋势,可能会漏掉一些未来潜力较大但前期表现不佳的股票。同时,该策略仅考虑了单一指标的条件,存在较大主观性和滞后性的问题。

如何优化?

可以加入更多筛选条件,如市盈率、市净率等基本面指标,以及行业板块趋势等板块指标,综合考虑股票价值和市场走势。此外,可以采用机器学习等方法,对选股条件进行参数优化,减少主观性和滞后性等问题,提高选股精度。

最终的选股逻辑

选择换手率在3%到12%之间,涨跌幅乘以超大单净量大于0,同时股票前25天中至少有1天有涨停板的股票为选股范围。

同花顺指标公式代码参考

以下是同花顺指标所需公式:

选股公式:
-- 计算涨跌幅乘以超大单净量
SuperVolume: (C*Big)/10000;

-- 计算选股
SELECT STOCK_SYMBOL FROM (
    SELECT STOCK_SYMBOL AS code, (C1 / C0) * SuperVolume AS Score FROM 
        (
            SELECT STOCK_SYMBOL AS code, CLOSE AS C0 FROM CandlesMin WHERE Cdl[:1] = LAST AND TIME = [TIME-1]
        ) ST,
        (
            SELECT STOCK_SYMBOL AS code, CLOSE AS C1 FROM CandlesMin WHERE Cdl[:1] = LAST AND TIME = [TIME-0]
        ) MT,
        (
            SELECT STOCK_SYMBOL AS code, BUY_VOL_L_VOL AS Big FROM CandlesDay WHERE Cdl[:1] = LAST AND TIME = [TIME-1]
        ) BT
        WHERE ST.code = MT.code AND MT.code = BT.code AND ST.O / MA10 >= 0.98 AND ST.O / MA10 <= 1.02 AND VOL >= 1000000 AND Score > 0 AND C1 >= 5 AND EXISTS(
            SELECT * FROM (
                SELECT STOCK_SYMBOL, COUNT(*) AS cnt FROM CandlesDay WHERE Cdl[:1] = "U" AND TIME >= [TIME-26] AND TIME < [TIME-1] GROUP BY STOCK_SYMBOL
            ) TT WHERE ST.code = TT.STOCK_SYMBOL AND TT.cnt >= 1
        ) 
        ORDER BY Score DESC
        LIMIT 10

Python代码参考

以下是Python代码实现该选股逻辑:

import pandas as pd
from typing import List
from datetime import datetime, timedelta

def select_stock(data: pd.DataFrame, n=10) -> List[str]:
    selected_stocks = []
    for code, df in data.groupby(level=0):
        df = df.sort_values('trade_time', ascending=True)
        if (df['dt'].iloc[-26:-1] == 'U').any() and \
           (df['float_shares'].iloc[-1] / 1000000000 <= 5.5) and \
           (df['volume'].iloc[-1] / df['volume'].iloc[-6:-1].mean() > 3) and \
           (df['turnover_rate'].iloc[-1] > 3) and (df['turnover_rate'].iloc[-1] < 12) and \
           (df['pct_chg'].iloc[-1] * abs(df['buy_volume'].iloc[-1] - df['sell_volume'].iloc[-1]) / 10000 > 0):
            s_weight = df['turnover_rate'].mean() * df['volume'].mean() / (df['close'].iloc[-1] * 10000)
            selected_stocks.append((code, s_weight))
    selected_stocks.sort(key=lambda x: x[1], reverse=True)
    selected_stocks = selected_stocks[:n]
    return [x[0] for x in selected_stocks]
    ## 如何进行量化策略实盘?
    请把您优化好的选股语句放入文章最下面模板的选股语句中即可。

    select_sentence = '市值小于100亿' #选股语句。

    模板如何使用?

    点击图标右上方的复制按钮,复制到自己的账户即可使用模板进行回测。


    ## 如果有任何问题请添加 下方的二维码进群提问。
    ![94c5cde12014f99e262a302741275d05.png](http://u.thsi.cn/imgsrc/pefile/94c5cde12014f99e262a302741275d05.png)
收益&风险
源码

评论