indexcode = '000016.SH'
startdate = '20140101'
enddate = '20190201'
stocklist = get_index_stocks(indexcode,enddate)
stocklist
['600196.SH', '600519.SH', '600036.SH', '601857.SH', '600050.SH', '601186.SH', '600029.SH', '601989.SH', '601166.SH', '601939.SH', '600309.SH', '600703.SH', '600000.SH', '600048.SH', '601088.SH', '601398.SH', '600887.SH', '600585.SH', '600690.SH', '601318.SH', '600276.SH', '600028.SH', '601818.SH', '601688.SH', '601888.SH', '601766.SH', '603993.SH', '601229.SH', '600340.SH', '600606.SH', '601138.SH', '600030.SH', '601169.SH', '600019.SH', '601668.SH', '600547.SH', '601988.SH', '603259.SH', '601328.SH', '601336.SH', '601390.SH', '601800.SH', '601360.SH', '600016.SH', '601628.SH', '601211.SH', '601006.SH', '600104.SH', '601601.SH', '601288.SH']
data = get_price(stocklist,startdate,enddate,'1d',['open','high','low','close'],is_panel =1)
#收盘价
closedf = data['close'].fillna(0)
opendf = data['open'].fillna(0)
highdf = data['high'].fillna(0)
lowdf = data['low'].fillna(0)
lowdf
| 600000.SH | 600016.SH | 600019.SH | 600028.SH | 600029.SH | 600030.SH | 600036.SH | 600048.SH | 600050.SH | 600104.SH | ... | 601766.SH | 601800.SH | 601818.SH | 601857.SH | 601888.SH | 601939.SH | 601988.SH | 601989.SH | 603259.SH | 603993.SH | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2014-01-02 | 4.88 | 4.47 | 3.00 | 3.03 | 2.36 | 10.80 | 7.11 | 3.94 | 3.00 | 6.45 | ... | 4.24 | 3.02 | 1.80 | 6.84 | 15.49 | 2.63 | 1.67 | 5.48 | 0.00 | 1.84 | 
| 2014-01-03 | 4.74 | 4.39 | 2.99 | 2.94 | 2.31 | 10.52 | 6.84 | 3.88 | 2.95 | 5.96 | ... | 4.13 | 2.97 | 1.77 | 6.81 | 15.25 | 2.58 | 1.64 | 5.36 | 0.00 | 1.83 | 
| 2014-01-06 | 4.78 | 4.26 | 2.79 | 2.89 | 2.23 | 10.18 | 6.76 | 3.60 | 2.87 | 5.64 | ... | 3.93 | 2.84 | 1.71 | 6.72 | 14.76 | 2.52 | 1.58 | 5.03 | 0.00 | 1.74 | 
| 2014-01-07 | 4.69 | 4.18 | 2.86 | 2.98 | 2.22 | 10.29 | 6.72 | 3.55 | 2.87 | 5.57 | ... | 3.91 | 2.85 | 1.72 | 6.89 | 14.69 | 2.55 | 1.57 | 5.01 | 0.00 | 1.74 | 
| 2014-01-08 | 4.76 | 4.19 | 2.72 | 2.95 | 2.22 | 10.28 | 6.90 | 3.48 | 2.82 | 5.80 | ... | 3.67 | 2.84 | 1.72 | 6.83 | 14.45 | 2.52 | 1.57 | 5.00 | 0.00 | 1.71 | 
| 2014-01-09 | 4.79 | 4.21 | 2.77 | 2.95 | 2.21 | 10.13 | 7.05 | 3.56 | 2.82 | 5.66 | ... | 3.76 | 2.83 | 1.71 | 6.79 | 14.41 | 2.50 | 1.57 | 5.01 | 0.00 | 1.66 | 
| 2014-01-10 | 4.85 | 4.19 | 2.73 | 2.98 | 2.19 | 9.82 | 7.05 | 3.58 | 2.78 | 5.55 | ... | 3.75 | 2.82 | 1.70 | 6.71 | 14.53 | 2.50 | 1.57 | 4.81 | 0.00 | 1.64 | 
| 2014-01-13 | 4.92 | 4.19 | 2.76 | 2.98 | 2.19 | 9.68 | 7.17 | 3.44 | 2.78 | 5.53 | ... | 3.74 | 2.82 | 1.70 | 6.71 | 14.85 | 2.51 | 1.58 | 4.89 | 0.00 | 1.66 | 
| 2014-01-14 | 4.86 | 4.20 | 2.84 | 3.04 | 2.20 | 9.69 | 7.09 | 3.46 | 2.79 | 5.61 | ... | 3.71 | 2.83 | 1.71 | 6.71 | 14.98 | 2.52 | 1.58 | 4.72 | 0.00 | 1.72 | 
| 2014-01-15 | 4.79 | 4.20 | 2.85 | 3.13 | 2.21 | 9.66 | 6.97 | 3.45 | 2.79 | 5.68 | ... | 3.74 | 2.83 | 1.70 | 6.78 | 15.35 | 2.51 | 1.58 | 4.75 | 0.00 | 1.68 | 
| 2014-01-16 | 4.80 | 4.17 | 2.85 | 3.19 | 2.21 | 9.71 | 6.96 | 3.45 | 2.80 | 5.61 | ... | 3.70 | 2.83 | 1.70 | 6.74 | 15.52 | 2.47 | 1.57 | 4.71 | 0.00 | 1.68 | 
| 2014-01-17 | 4.73 | 4.06 | 2.68 | 3.18 | 2.20 | 9.67 | 6.85 | 3.44 | 2.78 | 5.26 | ... | 3.58 | 2.79 | 1.66 | 6.72 | 15.14 | 2.44 | 1.56 | 4.63 | 0.00 | 1.69 | 
| 2014-01-20 | 4.71 | 3.95 | 2.71 | 3.09 | 2.20 | 9.78 | 6.86 | 3.42 | 2.76 | 5.03 | ... | 3.51 | 2.76 | 1.63 | 6.82 | 14.91 | 2.46 | 1.53 | 4.68 | 0.00 | 1.65 | 
| 2014-01-21 | 4.75 | 3.97 | 2.71 | 3.15 | 2.21 | 9.87 | 6.92 | 3.49 | 2.77 | 5.18 | ... | 3.55 | 2.80 | 1.64 | 6.81 | 15.30 | 2.46 | 1.54 | 4.69 | 0.00 | 1.65 | 
| 2014-01-22 | 4.80 | 4.00 | 2.73 | 3.18 | 2.25 | 10.05 | 6.92 | 3.56 | 2.79 | 5.33 | ... | 3.61 | 2.82 | 1.65 | 6.82 | 15.55 | 2.48 | 1.55 | 4.73 | 0.00 | 1.68 | 
| 2014-01-23 | 4.83 | 4.04 | 2.75 | 3.13 | 2.28 | 10.15 | 6.93 | 3.77 | 2.81 | 5.69 | ... | 3.79 | 2.86 | 1.65 | 6.82 | 15.81 | 2.47 | 1.56 | 4.98 | 0.00 | 1.71 | 
| 2014-01-24 | 4.78 | 4.00 | 2.74 | 3.14 | 2.28 | 10.14 | 6.83 | 3.76 | 2.79 | 5.65 | ... | 3.82 | 2.85 | 1.63 | 6.80 | 15.97 | 2.46 | 1.55 | 5.04 | 0.00 | 1.70 | 
| 2014-01-27 | 4.75 | 3.96 | 2.74 | 3.08 | 2.28 | 9.84 | 6.72 | 3.82 | 2.78 | 5.60 | ... | 3.68 | 2.83 | 1.63 | 6.72 | 15.63 | 2.45 | 1.54 | 5.07 | 0.00 | 1.73 | 
| 2014-01-28 | 4.77 | 4.06 | 2.75 | 3.07 | 2.29 | 9.83 | 6.78 | 3.83 | 2.79 | 5.66 | ... | 3.68 | 2.80 | 1.64 | 6.74 | 15.71 | 2.47 | 1.55 | 5.07 | 0.00 | 1.72 | 
| 2014-01-29 | 4.82 | 4.12 | 2.76 | 3.06 | 2.28 | 9.87 | 6.88 | 3.78 | 2.82 | 5.62 | ... | 3.60 | 2.84 | 1.66 | 6.74 | 15.12 | 2.49 | 1.57 | 5.08 | 0.00 | 1.72 | 
| 2014-01-30 | 4.78 | 4.23 | 2.78 | 3.04 | 2.27 | 9.86 | 6.76 | 3.66 | 2.79 | 5.61 | ... | 3.47 | 2.82 | 1.65 | 6.74 | 15.05 | 2.49 | 1.59 | 5.04 | 0.00 | 1.70 | 
| 2014-02-07 | 4.73 | 4.14 | 2.76 | 2.99 | 2.24 | 9.66 | 6.68 | 3.58 | 2.79 | 5.28 | ... | 3.39 | 2.81 | 1.64 | 6.66 | 15.00 | 2.46 | 1.56 | 5.02 | 0.00 | 1.67 | 
| 2014-02-10 | 4.79 | 4.19 | 2.78 | 3.05 | 2.27 | 9.85 | 6.79 | 3.76 | 2.83 | 5.69 | ... | 3.51 | 2.85 | 1.65 | 6.71 | 14.68 | 2.48 | 1.57 | 5.32 | 0.00 | 1.72 | 
| 2014-02-11 | 4.84 | 4.24 | 2.80 | 3.07 | 2.30 | 10.04 | 6.77 | 3.77 | 2.83 | 6.06 | ... | 3.72 | 2.89 | 1.67 | 6.74 | 15.80 | 2.48 | 1.58 | 5.49 | 0.00 | 1.75 | 
| 2014-02-12 | 4.99 | 4.46 | 2.82 | 3.09 | 2.32 | 10.18 | 6.92 | 3.83 | 2.86 | 5.98 | ... | 3.72 | 2.93 | 1.72 | 6.76 | 17.05 | 2.53 | 1.61 | 5.44 | 0.00 | 1.76 | 
| 2014-02-13 | 4.97 | 4.50 | 2.82 | 3.09 | 2.32 | 10.08 | 6.87 | 3.71 | 2.86 | 5.97 | ... | 3.63 | 2.92 | 1.69 | 6.76 | 16.91 | 2.53 | 1.61 | 5.29 | 0.00 | 1.77 | 
| 2014-02-14 | 5.04 | 4.67 | 2.81 | 3.08 | 2.33 | 10.12 | 6.89 | 3.66 | 2.86 | 5.99 | ... | 3.62 | 2.92 | 1.71 | 6.74 | 16.95 | 2.54 | 1.61 | 5.29 | 0.00 | 1.76 | 
| 2014-02-17 | 5.02 | 4.57 | 2.83 | 3.10 | 2.34 | 10.15 | 6.91 | 3.60 | 2.87 | 6.11 | ... | 3.68 | 2.95 | 1.70 | 6.76 | 17.00 | 2.55 | 1.62 | 5.37 | 0.00 | 1.79 | 
| 2014-02-18 | 4.85 | 4.50 | 2.80 | 3.10 | 2.28 | 9.76 | 6.74 | 3.53 | 2.88 | 6.06 | ... | 3.62 | 2.90 | 1.67 | 6.77 | 17.13 | 2.51 | 1.61 | 5.43 | 0.00 | 1.78 | 
| 2014-02-19 | 4.82 | 4.52 | 2.80 | 3.09 | 2.28 | 9.62 | 6.72 | 3.50 | 2.88 | 6.09 | ... | 3.59 | 2.89 | 1.67 | 6.73 | 17.18 | 2.51 | 1.61 | 5.38 | 0.00 | 1.76 | 
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 
| 2018-12-20 | 10.11 | 5.73 | 6.57 | 5.57 | 6.90 | 16.20 | 25.65 | 12.21 | 5.12 | 24.87 | ... | 9.01 | 11.77 | 3.68 | 7.38 | 58.56 | 6.33 | 3.52 | 4.13 | 75.71 | 4.01 | 
| 2018-12-21 | 10.00 | 5.67 | 6.55 | 5.51 | 6.73 | 15.89 | 25.25 | 11.53 | 5.08 | 25.08 | ... | 9.01 | 11.72 | 3.62 | 7.35 | 57.10 | 6.20 | 3.52 | 4.06 | 74.00 | 3.91 | 
| 2018-12-24 | 9.86 | 5.66 | 6.57 | 5.56 | 6.75 | 15.88 | 24.92 | 11.61 | 5.11 | 25.21 | ... | 9.07 | 11.60 | 3.62 | 7.35 | 58.00 | 6.23 | 3.55 | 4.06 | 74.60 | 3.92 | 
| 2018-12-25 | 9.60 | 5.58 | 6.31 | 5.55 | 6.75 | 16.01 | 24.77 | 11.67 | 5.06 | 25.49 | ... | 8.81 | 10.99 | 3.57 | 7.20 | 58.60 | 6.20 | 3.56 | 4.12 | 74.00 | 3.76 | 
| 2018-12-26 | 9.64 | 5.63 | 6.32 | 5.60 | 6.80 | 16.01 | 24.85 | 11.62 | 5.13 | 25.96 | ... | 8.94 | 11.19 | 3.62 | 7.24 | 57.35 | 6.25 | 3.60 | 4.17 | 74.98 | 3.84 | 
| 2018-12-27 | 9.66 | 5.63 | 6.39 | 5.23 | 6.60 | 16.01 | 24.82 | 11.75 | 5.11 | 25.97 | ... | 8.81 | 11.15 | 3.64 | 7.15 | 58.67 | 6.28 | 3.63 | 4.21 | 74.75 | 3.75 | 
| 2018-12-28 | 9.71 | 5.65 | 6.43 | 4.99 | 6.57 | 16.01 | 24.91 | 11.70 | 5.11 | 26.05 | ... | 8.84 | 11.17 | 3.65 | 7.14 | 58.78 | 6.30 | 3.61 | 4.23 | 74.27 | 3.74 | 
| 2019-01-02 | 9.58 | 5.61 | 6.30 | 4.96 | 6.51 | 16.01 | 24.40 | 11.52 | 5.12 | 24.95 | ... | 8.70 | 10.98 | 3.62 | 7.12 | 58.90 | 6.23 | 3.53 | 4.23 | 71.55 | 3.65 | 
| 2019-01-03 | 9.66 | 5.62 | 6.33 | 4.96 | 6.58 | 16.01 | 24.38 | 11.61 | 5.13 | 24.76 | ... | 8.76 | 11.02 | 3.65 | 7.13 | 56.50 | 6.22 | 3.52 | 4.24 | 71.06 | 3.67 | 
| 2019-01-04 | 9.70 | 5.63 | 6.36 | 5.00 | 6.55 | 16.01 | 24.65 | 11.75 | 5.06 | 24.31 | ... | 8.89 | 10.83 | 3.71 | 7.17 | 55.73 | 6.19 | 3.52 | 4.30 | 70.48 | 3.67 | 
| 2019-01-07 | 9.92 | 5.74 | 6.53 | 5.12 | 6.81 | 16.01 | 25.29 | 12.06 | 5.20 | 24.60 | ... | 9.22 | 11.34 | 3.83 | 7.28 | 56.89 | 6.31 | 3.55 | 4.47 | 71.38 | 3.83 | 
| 2019-01-08 | 9.91 | 5.73 | 6.58 | 5.17 | 6.86 | 16.01 | 25.16 | 11.72 | 5.23 | 24.23 | ... | 9.19 | 11.32 | 3.80 | 7.30 | 57.74 | 6.29 | 3.52 | 4.51 | 71.02 | 3.85 | 
| 2019-01-09 | 9.98 | 5.76 | 6.68 | 5.29 | 6.89 | 16.01 | 25.22 | 11.92 | 5.26 | 24.98 | ... | 9.16 | 11.27 | 3.83 | 7.32 | 59.55 | 6.34 | 3.54 | 4.46 | 71.53 | 3.83 | 
| 2019-01-10 | 9.92 | 5.71 | 6.67 | 5.29 | 6.92 | 16.75 | 25.47 | 11.94 | 5.21 | 24.78 | ... | 9.01 | 11.12 | 3.83 | 7.34 | 59.80 | 6.33 | 3.51 | 4.42 | 71.82 | 3.80 | 
| 2019-01-11 | 9.96 | 5.74 | 6.70 | 5.28 | 7.09 | 16.74 | 25.75 | 11.90 | 5.27 | 24.89 | ... | 8.95 | 11.07 | 3.84 | 7.34 | 59.77 | 6.30 | 3.52 | 4.43 | 71.30 | 3.80 | 
| 2019-01-14 | 10.01 | 5.72 | 6.69 | 5.28 | 7.15 | 16.97 | 26.22 | 11.65 | 5.30 | 24.80 | ... | 8.98 | 11.02 | 3.85 | 7.30 | 58.46 | 6.29 | 3.49 | 4.45 | 71.55 | 3.80 | 
| 2019-01-15 | 10.05 | 5.74 | 6.74 | 5.30 | 7.17 | 17.01 | 26.30 | 11.23 | 5.32 | 24.79 | ... | 8.98 | 11.02 | 3.87 | 7.31 | 58.80 | 6.28 | 3.50 | 4.47 | 71.30 | 3.80 | 
| 2019-01-16 | 10.07 | 5.76 | 6.76 | 5.33 | 7.09 | 17.48 | 26.61 | 11.50 | 5.35 | 25.11 | ... | 8.98 | 10.93 | 3.90 | 7.33 | 60.00 | 6.36 | 3.50 | 4.38 | 71.83 | 3.81 | 
| 2019-01-17 | 10.07 | 5.75 | 6.76 | 5.34 | 7.10 | 17.51 | 26.43 | 11.72 | 5.31 | 25.02 | ... | 8.91 | 10.87 | 3.90 | 7.30 | 60.45 | 6.37 | 3.51 | 4.37 | 72.80 | 3.78 | 
| 2019-01-18 | 10.22 | 5.76 | 6.77 | 5.36 | 7.12 | 17.51 | 26.46 | 11.75 | 5.31 | 25.00 | ... | 8.92 | 10.90 | 3.91 | 7.28 | 57.00 | 6.47 | 3.53 | 4.38 | 73.40 | 3.81 | 
| 2019-01-21 | 10.30 | 5.81 | 6.94 | 5.43 | 7.11 | 17.69 | 27.03 | 11.85 | 5.36 | 25.45 | ... | 8.93 | 11.05 | 3.92 | 7.36 | 59.28 | 6.63 | 3.56 | 4.41 | 75.15 | 3.91 | 
| 2019-01-22 | 10.23 | 5.78 | 6.95 | 5.34 | 6.96 | 17.37 | 26.76 | 11.95 | 5.34 | 25.30 | ... | 8.86 | 10.83 | 3.86 | 7.30 | 58.39 | 6.56 | 3.55 | 4.39 | 75.56 | 3.85 | 
| 2019-01-23 | 10.25 | 5.79 | 6.81 | 5.34 | 6.98 | 17.36 | 26.92 | 11.87 | 5.32 | 25.18 | ... | 8.69 | 10.75 | 3.88 | 7.26 | 58.50 | 6.60 | 3.55 | 4.38 | 75.30 | 3.83 | 
| 2019-01-24 | 10.27 | 5.80 | 6.76 | 5.35 | 6.91 | 17.52 | 27.18 | 11.73 | 5.39 | 24.94 | ... | 8.38 | 10.53 | 3.87 | 7.22 | 53.31 | 6.63 | 3.56 | 4.35 | 75.37 | 3.83 | 
| 2019-01-25 | 10.38 | 5.83 | 6.88 | 5.46 | 6.95 | 17.89 | 27.85 | 11.93 | 5.38 | 25.59 | ... | 8.43 | 10.58 | 3.91 | 7.26 | 55.06 | 6.72 | 3.59 | 4.41 | 76.21 | 3.83 | 
| 2019-01-28 | 10.39 | 5.85 | 6.82 | 5.53 | 7.08 | 17.82 | 28.50 | 12.15 | 5.33 | 25.99 | ... | 8.65 | 10.64 | 3.92 | 7.26 | 54.67 | 6.75 | 3.61 | 4.38 | 73.73 | 3.83 | 
| 2019-01-29 | 10.38 | 5.85 | 6.80 | 5.49 | 6.94 | 17.82 | 28.47 | 12.14 | 5.26 | 25.73 | ... | 8.61 | 10.44 | 3.93 | 7.21 | 54.50 | 6.71 | 3.60 | 4.30 | 72.88 | 3.62 | 
| 2019-01-30 | 10.47 | 5.90 | 6.88 | 5.58 | 7.09 | 17.91 | 28.32 | 12.48 | 5.25 | 25.92 | ... | 8.60 | 10.56 | 3.97 | 7.24 | 54.01 | 6.79 | 3.62 | 4.31 | 74.43 | 3.73 | 
| 2019-01-31 | 10.51 | 5.91 | 6.94 | 5.63 | 7.05 | 17.99 | 28.45 | 12.64 | 5.26 | 26.10 | ... | 8.48 | 10.59 | 3.99 | 7.25 | 53.35 | 6.90 | 3.63 | 4.29 | 73.86 | 3.78 | 
| 2019-02-01 | 10.62 | 5.90 | 6.98 | 5.70 | 6.99 | 18.42 | 28.88 | 12.56 | 5.30 | 26.25 | ... | 8.50 | 10.63 | 4.03 | 7.28 | 53.50 | 6.97 | 3.65 | 4.30 | 76.00 | 3.83 | 
1243 rows × 50 columns
浦发银行(600000.SH)与中国石化(600028.SH)
2017-11-13至2018-02-05
stock = ['600000.SH','600028.SH']
trade = list(closedf.index.strftime('%Y%m%d'))
num = trade.index('20180205')
close = closedf[stock].iloc[num-59:num+1]
opens = opendf[stock].iloc[num-59:num+1]
high = highdf[stock].iloc[num-59:num+1]
low = lowdf[stock].iloc[num-59:num+1]
low
| 600000.SH | 600028.SH | |
|---|---|---|
| 2017-11-13 | 12.53 | 5.49 | 
| 2017-11-14 | 12.48 | 5.49 | 
| 2017-11-15 | 12.45 | 5.37 | 
| 2017-11-16 | 12.28 | 5.33 | 
| 2017-11-17 | 12.28 | 5.33 | 
| 2017-11-20 | 12.51 | 5.38 | 
| 2017-11-21 | 12.65 | 5.35 | 
| 2017-11-22 | 12.90 | 5.42 | 
| 2017-11-23 | 12.81 | 5.54 | 
| 2017-11-24 | 12.83 | 5.56 | 
| 2017-11-27 | 12.71 | 5.52 | 
| 2017-11-28 | 12.82 | 5.44 | 
| 2017-11-29 | 12.71 | 5.44 | 
| 2017-11-30 | 12.70 | 5.42 | 
| 2017-12-01 | 12.71 | 5.40 | 
| 2017-12-04 | 12.74 | 5.45 | 
| 2017-12-05 | 12.81 | 5.41 | 
| 2017-12-06 | 12.81 | 5.50 | 
| 2017-12-07 | 12.81 | 5.45 | 
| 2017-12-08 | 12.77 | 5.46 | 
| 2017-12-11 | 12.75 | 5.44 | 
| 2017-12-12 | 12.64 | 5.47 | 
| 2017-12-13 | 12.53 | 5.44 | 
| 2017-12-14 | 12.56 | 5.39 | 
| 2017-12-15 | 12.51 | 5.34 | 
| 2017-12-18 | 12.51 | 5.35 | 
| 2017-12-19 | 12.52 | 5.36 | 
| 2017-12-20 | 12.50 | 5.34 | 
| 2017-12-21 | 12.50 | 5.37 | 
| 2017-12-22 | 12.51 | 5.39 | 
| 2017-12-25 | 12.46 | 5.43 | 
| 2017-12-26 | 12.46 | 5.45 | 
| 2017-12-27 | 12.43 | 5.52 | 
| 2017-12-28 | 12.43 | 5.50 | 
| 2017-12-29 | 12.41 | 5.54 | 
| 2018-01-02 | 12.50 | 5.60 | 
| 2018-01-03 | 12.56 | 5.78 | 
| 2018-01-04 | 12.52 | 6.00 | 
| 2018-01-05 | 12.52 | 6.29 | 
| 2018-01-08 | 12.53 | 6.42 | 
| 2018-01-09 | 12.56 | 6.37 | 
| 2018-01-10 | 12.58 | 6.54 | 
| 2018-01-11 | 12.77 | 6.45 | 
| 2018-01-12 | 12.80 | 6.43 | 
| 2018-01-15 | 12.75 | 6.54 | 
| 2018-01-16 | 12.68 | 6.53 | 
| 2018-01-17 | 12.79 | 6.40 | 
| 2018-01-18 | 12.95 | 6.33 | 
| 2018-01-19 | 13.08 | 6.38 | 
| 2018-01-22 | 12.61 | 6.31 | 
| 2018-01-23 | 12.58 | 6.32 | 
| 2018-01-24 | 12.79 | 6.46 | 
| 2018-01-25 | 13.26 | 6.66 | 
| 2018-01-26 | 13.26 | 6.58 | 
| 2018-01-29 | 13.22 | 6.80 | 
| 2018-01-30 | 12.99 | 6.62 | 
| 2018-01-31 | 12.88 | 6.46 | 
| 2018-02-01 | 12.84 | 6.41 | 
| 2018-02-02 | 12.91 | 6.51 | 
| 2018-02-05 | 12.88 | 6.78 | 
import numpy as np
import matplotlib.pyplot as plt 
from matplotlib.finance import candlestick2_ohlc
import datetime
for s in stock:
    open1=list(opens[s])
    high1=list(high[s])
    low1=list(low[s])
    close1=list(close[s])
    #画图
    fig,ax = plt.subplots(figsize = (10,6.18),facecolor='white')
    fig.subplots_adjust() 
    ticks = ax.set_xticks([0,60])
    labels = ax.set_xticklabels([list(opens.index.strftime('%Y%m%d'))[0],list(opens.index.strftime('%Y%m%d'))[-1]], fontsize=10) 
    plt.yticks()  
    plt.title("{} K线走势图".format(s),fontsize = 15)  
    plt.ylabel("股价",fontsize = 15)  
    candlestick2_ohlc(ax,open1,high1,low1,close1,width=0.6,colorup='red',colordown='green')
s1 = '600000.SH'
s2 = '600028.SH' 
corropen = round(np.corrcoef(opens[s1],opens[s2])[0][1],3)
corrhigh = round(np.corrcoef(high[s1],high[s2])[0][1],3)
corrlow = round(np.corrcoef(low[s1],low[s2])[0][1],3)
corrclose = round(np.corrcoef(close[s1],close[s2])[0][1],3)
print('开盘价的相似度:{}'.format(corropen))
print('最高价的相似度:{}'.format(corrhigh))
print('最低价价的相似度:{}'.format(corrlow))
print('收盘价的相似度:{}'.format(corrclose))
#综合值
T = (corropen+corrhigh+corrlow+corrclose)/4
T = round(T,2)
T
开盘价的相似度:0.534 最高价的相似度:0.582 最低价价的相似度:0.573 收盘价的相似度:0.607
0.57