#开始时间
startdate = '20140101'
#结束时间
enddate = '20190227'
#全市场股票获取
stock = list(get_all_securities('stock',enddate).index)
#数据获取
data = get_price(stock,startdate,enddate,'1d',['close','low','open','high'],True,'pre',is_panel=1)
close = data['close']
low = data['low']
opens = data['open']
#最低价非涨停价
limit_down = close-low
limit_down = limit_down[limit_down!=0]
#开盘价为涨停价
limit_open = round(close.shift()*1.1,2)-opens
limit_open = limit_open[limit_open==0]
#开板
df = limit_open+limit_down
df = df.T
non_limit = {}
num = 0
for s in list(df.columns):
day = s.strftime('%Y-%m-%d')
dt = df[s]
dt = list(dt[dt>0].index)
if len(dt)>0:
num +=len(dt)
non_limit[day]=dt
else:
pass
non_limit
print('开板数:{}'.format(num))
limitdt = {}
num = 0
tradeday = list(get_trade_days(startdate, '20200202', count=None).strftime('%Y-%m-%d'))
for d in tradeday:
print(tradeday.index(d),len(tradeday))
if d in list(non_limit.keys()):
day = tradeday[tradeday.index(d)+1]
stockdata = get_price(non_limit[d],None,day,'1m',['open','high','close','low'],True,'pre',bar_count=241,is_panel=1)
pc = stockdata['close'].iloc[0]
highlimit = round(pc*1.1,2)
c = stockdata['close'].iloc[-240:]
h = stockdata['high'].iloc[-240:]
l = stockdata['low'].iloc[-240:]
for t in list(range(1,240)):
p1 = h.iloc[t]-highlimit
p1 = list(p1[p1==0].index)
p2 = c.iloc[t-1]-highlimit
p2 = list(p2[p2<0].index)
stock = list((set(p1)&set(p2)))
if d in list(limitdt.keys()):
limitdt[d] = list(set(limitdt[d]+stock))
else:
limitdt[d] = list(stock)
limitdt
开板数:1958 0 1480 1 1480 2 1480 3 1480 4 1480 5 1480 6 1480 7 1480 8 1480 9 1480 10 1480 11 1480 12 1480 13 1480 14 1480 15 1480 16 1480 17 1480 18 1480 19 1480 20 1480 21 1480 22 1480 23 1480 24 1480 25 1480 26 1480 27 1480 28 1480 29 1480 30 1480 31 1480 32 1480 33 1480 34 1480 35 1480 36 1480 37 1480 38 1480 39 1480 40 1480 41 1480 42 1480 43 1480 44 1480 45 1480 46 1480 47 1480 48 1480 49 1480 50 1480 51 1480 52 1480 53 1480 54 1480 55 1480 56 1480 57 1480 58 1480 59 1480 60 1480 61 1480 62 1480 63 1480 64 1480 65 1480 66 1480 67 1480 68 1480 69 1480 70 1480 71 1480 72 1480 73 1480 74 1480 75 1480 76 1480 77 1480 78 1480 79 1480 80 1480 81 1480 82 1480 83 1480 84 1480 85 1480 86 1480 87 1480 88 1480 89 1480 90 1480 91 1480 92 1480 93 1480 94 1480 95 1480 96 1480 97 1480 98 1480 99 1480 100 1480 101 1480 102 1480 103 1480 104 1480 105 1480 106 1480 107 1480 108 1480 109 1480 110 1480 111 1480 112 1480 113 1480 114 1480 115 1480 116 1480 117 1480 118 1480 119 1480 120 1480 121 1480 122 1480 123 1480 124 1480 125 1480 126 1480 127 1480 128 1480 129 1480 130 1480 131 1480 132 1480 133 1480 134 1480 135 1480 136 1480 137 1480 138 1480 139 1480 140 1480 141 1480 142 1480 143 1480 144 1480 145 1480 146 1480 147 1480 148 1480 149 1480 150 1480 151 1480 152 1480 153 1480 154 1480 155 1480 156 1480 157 1480 158 1480 159 1480 160 1480 161 1480 162 1480 163 1480 164 1480 165 1480 166 1480 167 1480 168 1480 169 1480 170 1480 171 1480 172 1480 173 1480 174 1480 175 1480 176 1480 177 1480 178 1480 179 1480 180 1480 181 1480 182 1480 183 1480 184 1480 185 1480 186 1480 187 1480 188 1480 189 1480 190 1480 191 1480 192 1480 193 1480 194 1480 195 1480 196 1480 197 1480 198 1480 199 1480 200 1480 201 1480 202 1480 203 1480 204 1480 205 1480 206 1480 207 1480 208 1480 209 1480 210 1480 211 1480 212 1480 213 1480 214 1480 215 1480 216 1480 217 1480 218 1480 219 1480 220 1480 221 1480 222 1480 223 1480 224 1480 225 1480 226 1480 227 1480 228 1480 229 1480 230 1480 231 1480 232 1480 233 1480 234 1480 235 1480 236 1480 237 1480 238 1480 239 1480 240 1480 241 1480 242 1480 243 1480 244 1480 245 1480 246 1480 247 1480 248 1480 249 1480 250 1480 251 1480 252 1480 253 1480 254 1480 255 1480 256 1480 257 1480 258 1480 259 1480 260 1480 261 1480 262 1480 263 1480 264 1480 265 1480 266 1480 267 1480 268 1480 269 1480 270 1480 271 1480 272 1480 273 1480 274 1480 275 1480 276 1480 277 1480 278 1480 279 1480 280 1480 281 1480 282 1480 283 1480 284 1480 285 1480 286 1480 287 1480 288 1480 289 1480 290 1480 291 1480 292 1480 293 1480 294 1480 295 1480 296 1480 297 1480 298 1480 299 1480 300 1480 301 1480 302 1480 303 1480 304 1480 305 1480 306 1480 307 1480 308 1480 309 1480 310 1480 311 1480 312 1480 313 1480 314 1480 315 1480 316 1480 317 1480 318 1480 319 1480 320 1480 321 1480 322 1480 323 1480 324 1480 325 1480 326 1480 327 1480 328 1480 329 1480 330 1480 331 1480 332 1480 333 1480 334 1480 335 1480 336 1480 337 1480 338 1480 339 1480 340 1480 341 1480 342 1480 343 1480 344 1480 345 1480 346 1480 347 1480 348 1480 349 1480 350 1480 351 1480 352 1480 353 1480 354 1480 355 1480 356 1480 357 1480 358 1480 359 1480 360 1480 361 1480 362 1480 363 1480 364 1480 365 1480 366 1480 367 1480 368 1480 369 1480 370 1480 371 1480 372 1480 373 1480 374 1480 375 1480 376 1480 377 1480 378 1480 379 1480 380 1480 381 1480 382 1480 383 1480 384 1480 385 1480 386 1480 387 1480 388 1480 389 1480 390 1480 391 1480 392 1480 393 1480 394 1480 395 1480 396 1480 397 1480 398 1480 399 1480 400 1480 401 1480 402 1480 403 1480 404 1480 405 1480 406 1480 407 1480 408 1480 409 1480 410 1480 411 1480 412 1480 413 1480 414 1480 415 1480 416 1480 417 1480 418 1480 419 1480 420 1480 421 1480 422 1480 423 1480 424 1480 425 1480 426 1480 427 1480 428 1480 429 1480 430 1480 431 1480 432 1480 433 1480 434 1480 435 1480 436 1480 437 1480 438 1480 439 1480 440 1480 441 1480 442 1480 443 1480 444 1480 445 1480 446 1480 447 1480 448 1480 449 1480 450 1480 451 1480 452 1480 453 1480 454 1480 455 1480 456 1480 457 1480 458 1480 459 1480 460 1480 461 1480 462 1480 463 1480 464 1480 465 1480 466 1480 467 1480 468 1480 469 1480 470 1480 471 1480 472 1480 473 1480 474 1480 475 1480 476 1480 477 1480 478 1480 479 1480 480 1480 481 1480 482 1480 483 1480 484 1480 485 1480 486 1480 487 1480 488 1480 489 1480 490 1480 491 1480 492 1480 493 1480 494 1480 495 1480 496 1480 497 1480 498 1480 499 1480 500 1480 501 1480 502 1480 503 1480 504 1480 505 1480 506 1480 507 1480 508 1480 509 1480 510 1480 511 1480 512 1480 513 1480 514 1480 515 1480 516 1480 517 1480 518 1480 519 1480 520 1480 521 1480 522 1480 523 1480 524 1480 525 1480 526 1480 527 1480 528 1480 529 1480 530 1480 531 1480 532 1480 533 1480 534 1480 535 1480 536 1480 537 1480 538 1480 539 1480 540 1480 541 1480 542 1480 543 1480 544 1480 545 1480 546 1480 547 1480 548 1480 549 1480 550 1480 551 1480 552 1480 553 1480 554 1480 555 1480 556 1480 557 1480 558 1480 559 1480 560 1480 561 1480 562 1480 563 1480 564 1480 565 1480 566 1480 567 1480 568 1480 569 1480 570 1480 571 1480 572 1480 573 1480 574 1480 575 1480 576 1480 577 1480 578 1480 579 1480 580 1480 581 1480 582 1480 583 1480 584 1480 585 1480 586 1480 587 1480 588 1480 589 1480 590 1480 591 1480 592 1480 593 1480 594 1480 595 1480 596 1480 597 1480 598 1480 599 1480 600 1480 601 1480 602 1480 603 1480 604 1480 605 1480 606 1480 607 1480 608 1480 609 1480 610 1480 611 1480 612 1480 613 1480 614 1480 615 1480 616 1480 617 1480 618 1480 619 1480 620 1480 621 1480 622 1480 623 1480 624 1480 625 1480 626 1480 627 1480 628 1480 629 1480 630 1480 631 1480 632 1480 633 1480 634 1480 635 1480 636 1480 637 1480 638 1480 639 1480 640 1480 641 1480 642 1480 643 1480 644 1480 645 1480 646 1480 647 1480 648 1480 649 1480 650 1480 651 1480 652 1480 653 1480 654 1480 655 1480 656 1480 657 1480 658 1480 659 1480 660 1480 661 1480 662 1480 663 1480 664 1480 665 1480 666 1480 667 1480 668 1480 669 1480 670 1480 671 1480 672 1480 673 1480 674 1480 675 1480 676 1480 677 1480 678 1480 679 1480 680 1480 681 1480 682 1480 683 1480 684 1480 685 1480 686 1480 687 1480 688 1480 689 1480 690 1480 691 1480 692 1480 693 1480 694 1480 695 1480 696 1480 697 1480 698 1480 699 1480 700 1480 701 1480 702 1480 703 1480 704 1480 705 1480 706 1480 707 1480 708 1480 709 1480 710 1480 711 1480 712 1480 713 1480 714 1480 715 1480 716 1480 717 1480 718 1480 719 1480 720 1480 721 1480 722 1480 723 1480 724 1480 725 1480 726 1480 727 1480 728 1480 729 1480 730 1480 731 1480 732 1480 733 1480 734 1480 735 1480 736 1480 737 1480 738 1480 739 1480 740 1480 741 1480 742 1480 743 1480 744 1480 745 1480 746 1480 747 1480 748 1480 749 1480 750 1480 751 1480 752 1480 753 1480 754 1480 755 1480 756 1480 757 1480 758 1480 759 1480 760 1480 761 1480 762 1480 763 1480 764 1480 765 1480 766 1480 767 1480 768 1480 769 1480 770 1480 771 1480 772 1480 773 1480 774 1480 775 1480 776 1480 777 1480 778 1480 779 1480 780 1480 781 1480 782 1480 783 1480 784 1480 785 1480 786 1480 787 1480 788 1480 789 1480 790 1480 791 1480 792 1480 793 1480 794 1480 795 1480 796 1480 797 1480 798 1480 799 1480 800 1480 801 1480 802 1480 803 1480 804 1480 805 1480 806 1480 807 1480 808 1480 809 1480 810 1480 811 1480 812 1480 813 1480 814 1480 815 1480 816 1480 817 1480 818 1480 819 1480 820 1480 821 1480 822 1480 823 1480 824 1480 825 1480 826 1480 827 1480 828 1480 829 1480 830 1480 831 1480 832 1480 833 1480 834 1480 835 1480 836 1480 837 1480 838 1480 839 1480 840 1480 841 1480 842 1480 843 1480 844 1480 845 1480 846 1480 847 1480 848 1480 849 1480 850 1480 851 1480 852 1480 853 1480 854 1480 855 1480 856 1480 857 1480 858 1480 859 1480 860 1480 861 1480 862 1480 863 1480 864 1480 865 1480 866 1480 867 1480 868 1480 869 1480 870 1480 871 1480 872 1480 873 1480 874 1480 875 1480 876 1480 877 1480 878 1480 879 1480 880 1480 881 1480 882 1480 883 1480 884 1480 885 1480 886 1480 887 1480 888 1480 889 1480 890 1480 891 1480 892 1480 893 1480 894 1480 895 1480 896 1480 897 1480 898 1480 899 1480 900 1480 901 1480 902 1480 903 1480 904 1480 905 1480 906 1480 907 1480 908 1480 909 1480 910 1480 911 1480 912 1480 913 1480 914 1480 915 1480 916 1480 917 1480 918 1480 919 1480 920 1480 921 1480 922 1480 923 1480 924 1480 925 1480 926 1480 927 1480 928 1480 929 1480 930 1480 931 1480 932 1480 933 1480 934 1480 935 1480 936 1480 937 1480 938 1480 939 1480 940 1480 941 1480 942 1480 943 1480 944 1480 945 1480 946 1480 947 1480 948 1480 949 1480 950 1480 951 1480 952 1480 953 1480 954 1480 955 1480 956 1480 957 1480 958 1480 959 1480 960 1480 961 1480 962 1480 963 1480 964 1480 965 1480 966 1480 967 1480 968 1480 969 1480 970 1480 971 1480 972 1480 973 1480 974 1480 975 1480 976 1480 977 1480 978 1480 979 1480 980 1480 981 1480 982 1480 983 1480 984 1480 985 1480 986 1480 987 1480 988 1480 989 1480 990 1480 991 1480 992 1480 993 1480 994 1480 995 1480 996 1480 997 1480 998 1480 999 1480 1000 1480 1001 1480 1002 1480 1003 1480 1004 1480 1005 1480 1006 1480 1007 1480 1008 1480 1009 1480 1010 1480 1011 1480 1012 1480 1013 1480 1014 1480 1015 1480 1016 1480 1017 1480 1018 1480 1019 1480 1020 1480 1021 1480 1022 1480 1023 1480 1024 1480 1025 1480 1026 1480 1027 1480 1028 1480 1029 1480 1030 1480 1031 1480 1032 1480 1033 1480 1034 1480 1035 1480 1036 1480 1037 1480 1038 1480 1039 1480 1040 1480 1041 1480 1042 1480 1043 1480 1044 1480 1045 1480 1046 1480 1047 1480 1048 1480 1049 1480 1050 1480 1051 1480 1052 1480 1053 1480 1054 1480 1055 1480 1056 1480 1057 1480 1058 1480 1059 1480 1060 1480 1061 1480 1062 1480 1063 1480 1064 1480 1065 1480 1066 1480 1067 1480 1068 1480 1069 1480 1070 1480 1071 1480 1072 1480 1073 1480 1074 1480 1075 1480 1076 1480 1077 1480 1078 1480 1079 1480 1080 1480 1081 1480 1082 1480 1083 1480 1084 1480 1085 1480 1086 1480 1087 1480 1088 1480 1089 1480 1090 1480 1091 1480 1092 1480 1093 1480 1094 1480 1095 1480 1096 1480 1097 1480 1098 1480 1099 1480 1100 1480 1101 1480 1102 1480 1103 1480 1104 1480 1105 1480 1106 1480 1107 1480 1108 1480 1109 1480 1110 1480 1111 1480 1112 1480 1113 1480 1114 1480 1115 1480 1116 1480 1117 1480 1118 1480 1119 1480 1120 1480 1121 1480 1122 1480 1123 1480 1124 1480 1125 1480 1126 1480 1127 1480 1128 1480 1129 1480 1130 1480 1131 1480 1132 1480 1133 1480 1134 1480 1135 1480 1136 1480 1137 1480 1138 1480 1139 1480 1140 1480 1141 1480 1142 1480 1143 1480 1144 1480 1145 1480 1146 1480 1147 1480 1148 1480 1149 1480 1150 1480 1151 1480 1152 1480 1153 1480 1154 1480 1155 1480 1156 1480 1157 1480 1158 1480 1159 1480 1160 1480 1161 1480 1162 1480 1163 1480 1164 1480 1165 1480 1166 1480 1167 1480 1168 1480 1169 1480 1170 1480 1171 1480 1172 1480 1173 1480 1174 1480 1175 1480 1176 1480 1177 1480 1178 1480 1179 1480 1180 1480 1181 1480 1182 1480 1183 1480 1184 1480 1185 1480 1186 1480 1187 1480 1188 1480 1189 1480 1190 1480 1191 1480 1192 1480 1193 1480 1194 1480 1195 1480 1196 1480 1197 1480 1198 1480 1199 1480 1200 1480 1201 1480 1202 1480 1203 1480 1204 1480 1205 1480 1206 1480 1207 1480 1208 1480 1209 1480 1210 1480 1211 1480 1212 1480 1213 1480 1214 1480 1215 1480 1216 1480 1217 1480 1218 1480 1219 1480 1220 1480 1221 1480 1222 1480 1223 1480 1224 1480 1225 1480 1226 1480 1227 1480 1228 1480 1229 1480 1230 1480 1231 1480 1232 1480 1233 1480 1234 1480 1235 1480 1236 1480 1237 1480 1238 1480 1239 1480 1240 1480 1241 1480 1242 1480 1243 1480 1244 1480 1245 1480 1246 1480 1247 1480 1248 1480 1249 1480 1250 1480 1251 1480 1252 1480 1253 1480 1254 1480 1255 1480 1256 1480 1257 1480 1258 1480 1259 1480 1260 1480 1261 1480 1262 1480 1263 1480 1264 1480 1265 1480 1266 1480 1267 1480 1268 1480 1269 1480 1270 1480 1271 1480 1272 1480 1273 1480 1274 1480 1275 1480 1276 1480 1277 1480 1278 1480 1279 1480 1280 1480 1281 1480 1282 1480 1283 1480 1284 1480 1285 1480 1286 1480 1287 1480 1288 1480 1289 1480 1290 1480 1291 1480 1292 1480 1293 1480 1294 1480 1295 1480 1296 1480 1297 1480 1298 1480 1299 1480 1300 1480 1301 1480 1302 1480 1303 1480 1304 1480 1305 1480 1306 1480 1307 1480 1308 1480 1309 1480 1310 1480 1311 1480 1312 1480 1313 1480 1314 1480 1315 1480 1316 1480 1317 1480 1318 1480 1319 1480 1320 1480 1321 1480 1322 1480 1323 1480 1324 1480 1325 1480 1326 1480 1327 1480 1328 1480 1329 1480 1330 1480 1331 1480 1332 1480 1333 1480 1334 1480 1335 1480 1336 1480 1337 1480 1338 1480 1339 1480 1340 1480 1341 1480 1342 1480 1343 1480 1344 1480 1345 1480 1346 1480 1347 1480 1348 1480 1349 1480 1350 1480 1351 1480 1352 1480 1353 1480 1354 1480 1355 1480 1356 1480 1357 1480 1358 1480 1359 1480 1360 1480 1361 1480 1362 1480 1363 1480 1364 1480 1365 1480 1366 1480 1367 1480 1368 1480 1369 1480 1370 1480 1371 1480 1372 1480 1373 1480 1374 1480 1375 1480 1376 1480 1377 1480 1378 1480 1379 1480 1380 1480 1381 1480 1382 1480 1383 1480 1384 1480 1385 1480 1386 1480 1387 1480 1388 1480 1389 1480 1390 1480 1391 1480 1392 1480 1393 1480 1394 1480 1395 1480 1396 1480 1397 1480 1398 1480 1399 1480 1400 1480 1401 1480 1402 1480 1403 1480 1404 1480 1405 1480 1406 1480 1407 1480 1408 1480 1409 1480 1410 1480 1411 1480 1412 1480 1413 1480 1414 1480 1415 1480 1416 1480 1417 1480 1418 1480 1419 1480 1420 1480 1421 1480 1422 1480 1423 1480 1424 1480 1425 1480 1426 1480 1427 1480 1428 1480 1429 1480 1430 1480 1431 1480 1432 1480 1433 1480 1434 1480 1435 1480 1436 1480 1437 1480 1438 1480 1439 1480 1440 1480 1441 1480 1442 1480 1443 1480 1444 1480 1445 1480 1446 1480 1447 1480 1448 1480 1449 1480 1450 1480 1451 1480 1452 1480 1453 1480 1454 1480 1455 1480 1456 1480 1457 1480 1458 1480 1459 1480 1460 1480 1461 1480 1462 1480 1463 1480 1464 1480 1465 1480 1466 1480 1467 1480 1468 1480 1469 1480 1470 1480 1471 1480 1472 1480 1473 1480 1474 1480 1475 1480 1476 1480 1477 1480 1478 1480 1479 1480
{'2014-01-08': [], '2014-01-16': ['000767.SZ'], '2014-01-27': [], '2014-02-12': ['000971.SZ'], '2014-02-17': [], '2014-02-19': [], '2014-02-21': ['603003.SH', '000554.SZ'], '2014-02-28': ['300297.SZ', '600680.SH'], '2014-03-05': [], '2014-03-10': ['300116.SZ'], '2014-03-11': [], '2014-03-13': ['000923.SZ'], '2014-03-20': [], '2014-03-21': [], '2014-03-24': [], '2014-03-25': [], '2014-03-27': ['000687.SZ'], '2014-04-01': [], '2014-04-03': ['000918.SZ'], '2014-04-09': [], '2014-04-10': ['300278.SZ'], '2014-04-17': [], '2014-04-22': [], '2014-04-30': ['601001.SH'], '2014-05-13': [], '2014-05-14': [], '2014-05-21': ['002660.SZ'], '2014-05-28': [], '2014-06-04': ['600601.SH'], '2014-06-05': ['600074.SH'], '2014-06-06': ['002535.SZ'], '2014-06-11': [], '2014-06-16': ['300198.SZ'], '2014-06-30': ['002093.SZ'], '2014-07-02': ['300288.SZ'], '2014-07-04': ['002070.SZ'], '2014-07-07': ['600568.SH'], '2014-07-11': ['300166.SZ', '002629.SZ'], '2014-07-16': ['000868.SZ'], '2014-07-17': [], '2014-07-23': [], '2014-07-24': [], '2014-07-25': ['600319.SH'], '2014-07-28': ['600157.SH'], '2014-08-04': [], '2014-08-06': [], '2014-08-07': ['600556.SH'], '2014-08-08': [], '2014-08-11': ['600222.SH'], '2014-08-12': [], '2014-08-14': ['002535.SZ', '300208.SZ'], '2014-08-15': [], '2014-08-18': ['002125.SZ'], '2014-08-19': [], '2014-08-21': ['000922.SZ'], '2014-08-22': ['600825.SH', '300356.SZ'], '2014-09-02': ['600691.SH'], '2014-09-05': ['002564.SZ'], '2014-09-10': [], '2014-09-12': ['300161.SZ'], '2014-09-16': [], '2014-09-19': ['000852.SZ'], '2014-09-30': ['600962.SH', '002523.SZ'], '2014-10-10': ['300133.SZ'], '2014-10-13': ['000815.SZ'], '2014-10-15': [], '2014-10-17': ['000820.SZ', '600692.SH'], '2014-10-20': ['000018.SZ'], '2014-10-22': [], '2014-10-23': [], '2014-10-27': [], '2014-10-31': ['601008.SH'], '2014-11-05': ['300297.SZ'], '2014-11-25': ['000918.SZ'], '2014-11-26': ['000410.SZ'], '2014-12-05': ['600792.SH'], '2014-12-08': ['600794.SH', '000835.SZ'], '2014-12-09': ['600678.SH'], '2014-12-10': [], '2014-12-12': ['300013.SZ'], '2014-12-16': ['002392.SZ'], '2014-12-17': ['300256.SZ', '000885.SZ'], '2014-12-18': ['300010.SZ'], '2014-12-19': ['600569.SH'], '2014-12-22': ['601866.SH', '601600.SH', '600169.SH'], '2014-12-24': ['002239.SZ'], '2014-12-26': ['000680.SZ'], '2014-12-29': ['002337.SZ', '600227.SH'], '2014-12-31': ['300268.SZ'], '2015-01-06': ['601918.SH'], '2015-01-08': [], '2015-01-09': [], '2015-01-12': ['002738.SZ'], '2015-01-13': [], '2015-01-14': ['000498.SZ'], '2015-01-21': ['300411.SZ'], '2015-01-23': ['300268.SZ', '600156.SH'], '2015-01-27': [], '2015-01-30': ['002740.SZ'], '2015-02-03': ['000586.SZ'], '2015-02-04': ['000875.SZ'], '2015-02-05': [], '2015-02-16': [], '2015-02-26': [], '2015-02-27': [], '2015-03-02': ['300228.SZ'], '2015-03-04': ['300364.SZ'], '2015-03-05': ['300364.SZ', '600608.SH'], '2015-03-06': ['300102.SZ'], '2015-03-10': ['300097.SZ'], '2015-03-12': ['600112.SH'], '2015-03-16': ['600207.SH'], '2015-03-17': ['000720.SZ', '000752.SZ'], '2015-03-18': ['300111.SZ', '600115.SH'], '2015-03-19': ['300247.SZ', '300092.SZ'], '2015-03-20': ['002663.SZ', '600714.SH', '000401.SZ'], '2015-03-23': [], '2015-03-24': ['300310.SZ'], '2015-03-27': ['000020.SZ'], '2015-04-02': ['002006.SZ'], '2015-04-03': ['002750.SZ', '603030.SH'], '2015-04-07': ['000693.SZ', '300301.SZ', '600552.SH'], '2015-04-09': ['600126.SH'], '2015-04-10': ['600759.SH'], '2015-04-13': ['300053.SZ'], '2015-04-14': ['300023.SZ', '000590.SZ'], '2015-04-15': ['002018.SZ', '002239.SZ', '002044.SZ'], '2015-04-16': ['000663.SZ'], '2015-04-20': ['601106.SH', '300116.SZ'], '2015-04-21': ['601106.SH'], '2015-04-22': ['000410.SZ'], '2015-04-23': ['000611.SZ'], '2015-04-24': ['002129.SZ'], '2015-04-27': ['300188.SZ'], '2015-04-30': [], '2015-05-04': ['000633.SZ', '002261.SZ', '600744.SH', '000616.SZ'], '2015-05-05': ['600744.SH', '000638.SZ'], '2015-05-06': ['300276.SZ'], '2015-05-08': ['002691.SZ'], '2015-05-11': ['300166.SZ', '300367.SZ', '300226.SZ'], '2015-05-12': ['000971.SZ', '300166.SZ', '002442.SZ'], '2015-05-13': ['600836.SH', '300248.SZ'], '2015-05-14': ['300431.SZ', '002625.SZ'], '2015-05-15': [], '2015-05-19': ['002014.SZ', '300364.SZ'], '2015-05-20': ['000838.SZ', '000609.SZ'], '2015-05-21': ['002089.SZ', '600198.SH'], '2015-05-22': ['300051.SZ', '002131.SZ', '300111.SZ', '300299.SZ', '002494.SZ', '601919.SH'], '2015-05-25': ['002231.SZ'], '2015-05-26': ['600311.SH', '600130.SH'], '2015-05-27': ['300417.SZ'], '2015-05-28': ['002163.SZ'], '2015-05-29': ['000010.SZ', '600696.SH'], '2015-06-01': ['300404.SZ', '002362.SZ', '300149.SZ'], '2015-06-02': ['600696.SH'], '2015-06-03': ['600800.SH', '002660.SZ', '600854.SH', '000558.SZ'], '2015-06-04': ['600083.SH', '002329.SZ', '002617.SZ'], '2015-06-05': ['300312.SZ'], '2015-06-08': ['300074.SZ'], '2015-06-09': ['002755.SZ', '002442.SZ'], '2015-06-12': ['600843.SH', '600890.SH', '603227.SH', '300459.SZ'], '2015-06-15': [], '2015-06-16': ['002319.SZ', '600385.SH', '600151.SH'], '2015-06-18': ['002066.SZ', '000411.SZ', '002645.SZ'], '2015-06-19': ['002114.SZ'], '2015-06-24': ['300126.SZ'], '2015-06-25': ['002552.SZ'], '2015-06-26': ['300464.SZ', '603616.SH'], '2015-06-29': ['601968.SH', '002021.SZ'], '2015-07-01': ['300309.SZ'], '2015-07-02': ['002264.SZ'], '2015-07-06': ['000835.SZ', '002231.SZ', '601988.SH', '002234.SZ', '300282.SZ', '300102.SZ', '601969.SH', '300430.SZ', '300464.SZ', '600854.SH', '600844.SH', '002477.SZ', '000969.SZ', '002134.SZ'], '2015-07-10': ['002154.SZ', '002013.SZ', '600178.SH', '600229.SH', '000816.SZ', '300177.SZ', '300334.SZ', '000498.SZ', '300311.SZ', '603979.SH', '000678.SZ', '002446.SZ'], '2015-07-13': ['000931.SZ', '002168.SZ', '300034.SZ', '300129.SZ', '600017.SH', '600543.SH', '002265.SZ', '002165.SZ', '002297.SZ', '300256.SZ', '000633.SZ', '600831.SH', '000428.SZ', '000613.SZ', '300400.SZ', '300223.SZ', '300101.SZ', '600678.SH', '002046.SZ', '600220.SH', '300102.SZ', '002337.SZ', '002540.SZ', '601008.SH', '300241.SZ', '300437.SZ', '000032.SZ', '000663.SZ', '600088.SH', '300067.SZ', '002108.SZ', '002188.SZ', '600306.SH', '002044.SZ', '600248.SH', '600550.SH', '300283.SZ', '600206.SH', '300354.SZ', '000597.SZ', '603300.SH', '600221.SH', '600714.SH', '000830.SZ', '002163.SZ', '300246.SZ', '600275.SH', '002362.SZ', '300125.SZ', '600236.SH', '300315.SZ', '000065.SZ', '600389.SH', '600979.SH', '300270.SZ', '600423.SH', '002685.SZ'], '2015-07-14': ['300333.SZ', '600359.SH', '600257.SH', '600052.SH', '000498.SZ', '600759.SH', '000883.SZ', '002319.SZ', '600985.SH', '600121.SH', '002291.SZ', '300388.SZ', '000958.SZ', '002583.SZ', '603598.SH', '002467.SZ', '600084.SH', '600671.SH', '603012.SH', '600117.SH', '300173.SZ', '002227.SZ', '600495.SH', '000638.SZ', '300370.SZ', '600275.SH', '603222.SH', '600055.SH', '000969.SZ'], '2015-07-15': ['600421.SH', '000605.SZ', '000681.SZ', '000425.SZ', '002077.SZ', '002610.SZ', '603030.SH', '000798.SZ', '300025.SZ', '002513.SZ', '300217.SZ', '002172.SZ', '000925.SZ', '000831.SZ', '600749.SH', '300404.SZ', '002255.SZ', '002359.SZ', '000593.SZ', '000911.SZ', '002181.SZ', '000971.SZ', '002476.SZ', '600496.SH', '000710.SZ', '000918.SZ', '002087.SZ', '002644.SZ', '600727.SH', '002618.SZ', '600331.SH', '600701.SH', '002114.SZ', '600601.SH', '002162.SZ', '000837.SZ'], '2015-07-16': ['000048.SZ', '600695.SH'], '2015-07-17': ['002392.SZ', '002663.SZ', '002208.SZ', '000610.SZ'], '2015-07-20': ['300079.SZ', '002502.SZ', '002176.SZ'], '2015-07-21': ['300192.SZ', '002159.SZ', '300166.SZ', '002477.SZ', '000638.SZ'], '2015-07-22': ['002220.SZ'], '2015-07-23': ['300235.SZ'], '2015-07-24': ['300459.SZ', '002341.SZ'], '2015-07-27': ['000663.SZ', '300401.SZ', '600728.SH'], '2015-07-28': ['002535.SZ'], '2015-07-29': ['002342.SZ', '000586.SZ'], '2015-07-30': ['300368.SZ'], '2015-07-31': ['002526.SZ'], '2015-08-03': ['000518.SZ'], '2015-08-04': ['603616.SH'], '2015-08-05': ['002494.SZ', '300201.SZ'], '2015-08-06': ['002560.SZ', '300345.SZ'], '2015-08-07': ['002070.SZ'], '2015-08-10': ['600072.SH', '002162.SZ', '600112.SH', '300226.SZ', '600058.SH'], '2015-08-11': ['600685.SH', '000859.SZ', '300364.SZ', '002260.SZ', '002464.SZ'], '2015-08-12': ['600760.SH'], '2015-08-14': ['600421.SH', '600961.SH', '600126.SH'], '2015-08-17': ['600802.SH'], '2015-08-18': ['600724.SH', '000010.SZ', '600653.SH'], '2015-08-20': ['300067.SZ'], '2015-08-21': [], '2015-08-24': ['000425.SZ'], '2015-08-26': ['000628.SZ'], '2015-08-31': ['000766.SZ', '000585.SZ'], '2015-09-07': ['002159.SZ', '000502.SZ'], '2015-09-09': ['002077.SZ'], '2015-09-10': ['000005.SZ'], '2015-09-11': ['600172.SH'], '2015-09-14': ['600083.SH', '002066.SZ'], '2015-09-17': ['603616.SH', '300226.SZ', '002162.SZ'], '2015-09-18': ['300062.SZ'], '2015-09-21': [], '2015-09-22': [], '2015-09-25': ['600876.SH'], '2015-10-08': ['000911.SZ', '002506.SZ'], '2015-10-09': ['002246.SZ', '000426.SZ', '002684.SZ'], '2015-10-13': [], '2015-10-15': ['600579.SH'], '2015-10-16': ['000564.SZ'], '2015-10-19': ['300191.SZ', '002660.SZ', '600397.SH'], '2015-10-20': ['600689.SH', '002436.SZ'], '2015-10-21': ['002154.SZ', '002362.SZ', '002316.SZ'], '2015-10-23': ['002362.SZ', '002702.SZ', '300081.SZ'], '2015-10-26': ['300322.SZ', '002494.SZ', '000020.SZ', '300021.SZ', '600689.SH', '000019.SZ'], '2015-10-27': ['300076.SZ', '002432.SZ', '600207.SH'], '2015-10-28': ['002423.SZ'], '2015-10-29': ['600207.SH'], '2015-10-30': ['000020.SZ', '002570.SZ', '000760.SZ', '000019.SZ'], '2015-11-02': ['002149.SZ'], '2015-11-04': ['000567.SZ'], '2015-11-05': ['000526.SZ'], '2015-11-09': ['000886.SZ', '002723.SZ'], '2015-11-10': ['300080.SZ'], '2015-11-11': ['002392.SZ', '002668.SZ', '002161.SZ'], '2015-11-12': ['002189.SZ'], '2015-11-13': ['002387.SZ', '000760.SZ'], '2015-11-17': ['600238.SH'], '2015-11-20': [], '2015-11-23': ['600226.SH', '002708.SZ'], '2015-11-24': ['000633.SZ', '002259.SZ', '600186.SH', '002072.SZ'], '2015-11-25': [], '2015-11-26': ['001896.SZ'], '2015-11-27': ['600392.SH'], '2015-12-01': ['600165.SH'], '2015-12-02': ['600186.SH', '000668.SZ'], '2015-12-03': ['300288.SZ'], '2015-12-10': ['600666.SH', '002667.SZ'], '2015-12-14': [], '2015-12-15': ['002629.SZ'], '2015-12-18': ['600734.SH', '300265.SZ'], '2015-12-21': ['000514.SZ', '002642.SZ'], '2015-12-22': [], '2015-12-24': ['600306.SH'], '2015-12-25': [], '2015-12-28': ['002102.SZ'], '2015-12-29': [], '2015-12-31': ['002505.SZ', '000606.SZ'], '2016-01-06': ['600671.SH', '300148.SZ'], '2016-01-07': ['000025.SZ', '002423.SZ'], '2016-01-08': ['600448.SH'], '2016-01-11': ['600546.SH'], '2016-01-13': [], '2016-01-15': [], '2016-01-19': ['000048.SZ'], '2016-01-20': ['300466.SZ'], '2016-01-25': ['600207.SH'], '2016-01-28': [], '2016-02-01': ['600520.SH'], '2016-02-02': ['000525.SZ'], '2016-02-04': ['600724.SH', '600836.SH', '000505.SZ'], '2016-02-05': ['000693.SZ', '002114.SZ'], '2016-02-15': ['601899.SH'], '2016-02-17': ['600234.SH'], '2016-02-18': [], '2016-02-19': ['600319.SH'], '2016-02-23': ['000020.SZ', '600844.SH'], '2016-02-24': [], '2016-02-25': ['300280.SZ', '600963.SH'], '2016-02-26': [], '2016-02-29': ['000629.SZ'], '2016-03-03': ['000982.SZ'], '2016-03-04': ['000029.SZ'], '2016-03-07': [], '2016-03-08': ['600193.SH', '600882.SH'], '2016-03-14': [], '2016-03-16': [], '2016-03-21': ['000668.SZ'], '2016-03-22': [], '2016-03-25': ['300264.SZ', '600052.SH'], '2016-04-05': [], '2016-04-06': [], '2016-04-13': [], '2016-04-14': [], '2016-04-19': [], '2016-04-22': [], '2016-04-25': ['603028.SH'], '2016-04-27': ['600706.SH'], '2016-04-28': [], '2016-05-06': ['002070.SZ'], '2016-05-11': ['600127.SH'], '2016-05-12': ['000918.SZ'], '2016-05-16': ['000892.SZ'], '2016-05-17': ['600367.SH', '300081.SZ'], '2016-05-24': ['002535.SZ'], '2016-05-30': [], '2016-05-31': [], '2016-06-03': [], '2016-06-08': ['600069.SH'], '2016-06-17': [], '2016-06-20': ['300066.SZ'], '2016-06-21': ['600241.SH'], '2016-06-29': [], '2016-07-01': [], '2016-07-04': ['000567.SZ'], '2016-07-05': [], '2016-07-08': ['002313.SZ'], '2016-07-12': ['002113.SZ'], '2016-07-15': [], '2016-07-20': ['300391.SZ'], '2016-07-21': ['000571.SZ'], '2016-07-26': ['000835.SZ'], '2016-08-05': ['000918.SZ'], '2016-08-10': [], '2016-08-19': ['002516.SZ', '000885.SZ'], '2016-08-22': ['600187.SH'], '2016-08-30': [], '2016-08-31': [], '2016-09-01': [], '2016-09-07': ['600896.SH'], '2016-09-09': ['600126.SH'], '2016-09-13': [], '2016-09-14': ['300132.SZ'], '2016-09-22': [], '2016-09-26': ['600275.SH'], '2016-09-29': [], '2016-10-10': [], '2016-10-12': ['000567.SZ'], '2016-10-13': ['002630.SZ'], '2016-10-14': ['002122.SZ', '000567.SZ'], '2016-10-17': ['000960.SZ', '000959.SZ'], '2016-10-21': ['000553.SZ'], '2016-10-24': ['000043.SZ'], '2016-10-25': ['300240.SZ'], '2016-10-26': ['000980.SZ', '000912.SZ'], '2016-11-01': ['300044.SZ'], '2016-11-02': ['600275.SH'], '2016-11-03': ['600321.SH'], '2016-11-04': ['600288.SH', '300411.SZ'], '2016-11-07': [], '2016-11-09': [], '2016-11-10': ['002486.SZ'], '2016-11-11': ['000595.SZ', '603333.SH'], '2016-11-14': [], '2016-11-16': ['002564.SZ'], '2016-11-17': ['603716.SH'], '2016-11-21': ['300063.SZ'], '2016-11-23': [], '2016-12-12': [], '2016-12-14': ['600722.SH'], '2016-12-19': ['300268.SZ', '000017.SZ', '000939.SZ'], '2016-12-21': [], '2016-12-23': [], '2016-12-26': [], '2016-12-28': [], '2016-12-30': ['000993.SZ'], '2017-01-04': [], '2017-01-10': ['600178.SH'], '2017-01-13': ['600576.SH'], '2017-01-20': ['002207.SZ'], '2017-01-23': ['000885.SZ'], '2017-01-24': ['000605.SZ'], '2017-02-08': [], '2017-02-09': [], '2017-02-10': ['300596.SZ'], '2017-02-13': ['002307.SZ'], '2017-02-14': [], '2017-02-15': [], '2017-02-17': [], '2017-02-20': ['002323.SZ'], '2017-02-22': ['603066.SH'], '2017-02-23': [], '2017-03-06': ['300044.SZ'], '2017-03-07': ['600187.SH'], '2017-03-13': ['601212.SH'], '2017-03-14': [], '2017-03-15': ['002850.SZ'], '2017-03-16': ['600152.SH'], '2017-03-17': ['300534.SZ', '601212.SH'], '2017-03-21': [], '2017-03-23': ['000407.SZ'], '2017-03-24': [], '2017-03-28': ['000560.SZ'], '2017-03-30': ['002040.SZ'], '2017-03-31': [], '2017-04-05': ['002691.SZ', '002459.SZ', '600322.SH', '002494.SZ', '300107.SZ', '603778.SH', '300332.SZ', '600722.SH', '002310.SZ', '000638.SZ', '000965.SZ'], '2017-04-06': [], '2017-04-07': ['600155.SH', '600149.SH'], '2017-04-10': ['000822.SZ'], '2017-04-11': ['002774.SZ'], '2017-04-12': ['600550.SH', '000605.SZ'], '2017-04-13': ['000829.SZ'], '2017-04-14': ['002665.SZ', '000616.SZ'], '2017-04-17': [], '2017-04-28': ['300157.SZ'], '2017-05-02': ['300255.SZ', '000158.SZ'], '2017-05-04': [], '2017-05-05': [], '2017-05-12': ['600532.SH', '002633.SZ'], '2017-05-17': [], '2017-05-18': ['603728.SH'], '2017-05-22': [], '2017-05-31': [], '2017-06-05': [], '2017-06-06': ['002121.SZ'], '2017-06-07': [], '2017-06-08': ['603007.SH'], '2017-06-14': ['002835.SZ'], '2017-06-16': ['600652.SH'], '2017-06-19': ['002476.SZ'], '2017-06-22': [], '2017-06-23': [], '2017-06-29': [], '2017-07-03': [], '2017-07-10': [], '2017-07-17': [], '2017-07-24': [], '2017-07-25': [], '2017-07-27': ['600117.SH', '601919.SH'], '2017-07-28': ['000835.SZ'], '2017-08-02': ['002805.SZ'], '2017-08-04': ['000616.SZ'], '2017-08-07': ['600569.SH'], '2017-08-08': ['000923.SZ'], '2017-08-09': [], '2017-08-10': [], '2017-08-14': ['002600.SZ'], '2017-08-15': ['300386.SZ', '000018.SZ'], '2017-08-17': ['000751.SZ'], '2017-08-18': ['603602.SH', '601611.SH'], '2017-08-21': [], '2017-08-22': ['300678.SZ', '600050.SH'], '2017-08-28': ['300229.SZ', '601619.SH'], '2017-08-29': ['603042.SH'], '2017-09-01': ['002881.SZ', '300348.SZ'], '2017-09-05': ['600496.SH'], '2017-09-07': ['300198.SZ'], '2017-09-08': ['300313.SZ'], '2017-09-11': ['300692.SZ'], '2017-09-13': ['002604.SZ'], '2017-09-21': ['002156.SZ', '002639.SZ'], '2017-09-22': ['600444.SH'], '2017-09-25': [], '2017-09-27': ['300629.SZ'], '2017-09-29': ['002622.SZ', '600701.SH'], '2017-10-09': ['603106.SH'], '2017-10-10': [], '2017-10-11': ['300556.SZ'], '2017-10-12': [], '2017-10-13': ['300062.SZ'], '2017-10-17': [], '2017-10-19': [], '2017-10-23': ['600119.SH'], '2017-10-24': ['600763.SH', '300707.SZ', '002077.SZ'], '2017-11-03': ['600807.SH'], '2017-11-06': [], '2017-11-09': [], '2017-11-10': ['002409.SZ', '603729.SH'], '2017-11-22': ['002102.SZ'], '2017-11-23': [], '2017-11-24': [], '2017-11-30': ['300038.SZ'], '2017-12-04': ['600311.SH'], '2017-12-05': [], '2017-12-06': [], '2017-12-08': ['000420.SZ'], '2017-12-11': [], '2017-12-12': ['600520.SH'], '2017-12-22': [], '2017-12-25': [], '2017-12-29': [], '2018-01-04': ['300675.SZ'], '2018-01-05': ['002447.SZ'], '2018-01-10': ['600652.SH'], '2018-01-12': ['002369.SZ', '002610.SZ'], '2018-01-17': ['300698.SZ'], '2018-01-19': [], '2018-01-22': [], '2018-01-23': ['300226.SZ'], '2018-01-24': [], '2018-01-31': [], '2018-02-01': ['300677.SZ'], '2018-02-05': [], '2018-02-07': ['300230.SZ', '600053.SH'], '2018-02-12': [], '2018-02-13': [], '2018-02-23': ['600868.SH', '300621.SZ'], '2018-02-26': [], '2018-03-02': ['300353.SZ', '000410.SZ'], '2018-03-05': ['002769.SZ', '600207.SH', '002452.SZ'], '2018-03-06': ['600422.SH'], '2018-03-08': ['600175.SH'], '2018-03-09': ['000790.SZ'], '2018-03-12': [], '2018-03-13': ['002877.SZ'], '2018-03-14': [], '2018-03-16': ['002264.SZ'], '2018-03-19': ['300624.SZ'], '2018-03-20': ['002717.SZ'], '2018-03-21': ['603313.SH'], '2018-03-22': [], '2018-03-23': ['600800.SH', '600354.SH', '300682.SZ', '300175.SZ', '000713.SZ'], '2018-03-26': ['600095.SH'], '2018-03-27': [], '2018-03-29': ['300259.SZ', '300667.SZ'], '2018-03-30': [], '2018-04-02': ['300259.SZ', '002712.SZ'], '2018-04-04': ['000852.SZ', '600721.SH'], '2018-04-09': ['000955.SZ'], '2018-04-10': ['300589.SZ'], '2018-04-11': ['603637.SH', '300177.SZ', '300356.SZ', '300705.SZ'], '2018-04-13': ['300288.SZ'], '2018-04-16': ['601969.SH', '002159.SZ', '000571.SZ', '300189.SZ', '600238.SH'], '2018-04-17': ['000735.SZ', '002181.SZ'], '2018-04-18': ['603897.SH'], '2018-04-23': ['600853.SH'], '2018-04-24': [], '2018-04-26': ['002285.SZ', '300597.SZ', '002134.SZ'], '2018-04-27': ['600332.SH'], '2018-05-04': ['002889.SZ'], '2018-05-08': [], '2018-05-10': [], '2018-05-11': [], '2018-05-14': ['002930.SZ'], '2018-05-15': ['002931.SZ'], '2018-05-16': ['300063.SZ', '300175.SZ'], '2018-05-17': ['300578.SZ'], '2018-05-18': ['603536.SH'], '2018-05-21': ['300471.SZ', '002828.SZ'], '2018-05-22': [], '2018-05-25': ['603069.SH'], '2018-05-28': ['300556.SZ'], '2018-05-29': ['002758.SZ'], '2018-05-30': [], '2018-05-31': ['300454.SZ', '300268.SZ', '002903.SZ'], '2018-06-01': ['300740.SZ', '002889.SZ'], '2018-06-05': ['600309.SH'], '2018-06-06': [], '2018-06-07': ['600571.SH'], '2018-06-12': [], '2018-06-13': ['603398.SH'], '2018-06-14': ['002096.SZ', '000019.SZ'], '2018-06-15': ['300746.SZ', '002423.SZ'], '2018-06-19': [], '2018-06-20': ['600240.SH'], '2018-06-21': ['002333.SZ', '002909.SZ', '300283.SZ'], '2018-06-25': ['002108.SZ', '600657.SH', '000520.SZ', '603822.SH', '002684.SZ', '300312.SZ'], '2018-06-26': [], '2018-06-27': ['600385.SH', '600400.SH'], '2018-06-28': ['300693.SZ', '603826.SH', '002357.SZ'], '2018-07-02': ['603486.SH', '603901.SH', '300139.SZ', '000802.SZ'], '2018-07-03': ['601330.SH', '002374.SZ', '002211.SZ'], '2018-07-04': ['000802.SZ'], '2018-07-06': ['603895.SH'], '2018-07-09': ['600715.SH'], '2018-07-11': ['300458.SZ', '600481.SH', '603197.SH'], '2018-07-12': ['300747.SZ', '603602.SH', '300217.SZ'], '2018-07-13': ['002897.SZ'], '2018-07-16': ['002880.SZ', '002662.SZ'], '2018-07-17': [], '2018-07-18': ['300056.SZ'], '2018-07-19': ['002636.SZ'], '2018-07-20': ['002375.SZ'], '2018-07-24': ['002778.SZ', '600693.SH'], '2018-07-25': ['300032.SZ', '600812.SH', '300746.SZ'], '2018-07-26': ['300428.SZ', '000721.SZ', '000962.SZ'], '2018-07-27': ['000017.SZ', '300163.SZ', '600106.SH', '002021.SZ', '000955.SZ', '600255.SH', '600186.SH'], '2018-07-30': ['000509.SZ', '600225.SH'], '2018-07-31': ['603713.SH'], '2018-08-01': ['002401.SZ'], '2018-08-02': ['600853.SH', '002400.SZ', '600278.SH'], '2018-08-03': ['300240.SZ', '000633.SZ'], '2018-08-06': ['600281.SH'], '2018-08-07': ['300392.SZ'], '2018-08-08': ['600470.SH'], '2018-08-09': ['002315.SZ', '300392.SZ', '603657.SH'], '2018-08-10': ['600986.SH', '002691.SZ', '002523.SZ'], '2018-08-14': ['603557.SH', '002331.SZ'], '2018-08-15': ['600455.SH', '002193.SZ'], '2018-08-17': [], '2018-08-20': ['300724.SZ'], '2018-08-21': [], '2018-08-22': ['002721.SZ'], '2018-08-24': [], '2018-08-27': [], '2018-08-29': ['603050.SH'], '2018-09-03': ['002118.SZ'], '2018-09-04': [], '2018-09-05': ['300064.SZ'], '2018-09-06': ['002028.SZ', '002848.SZ'], '2018-09-07': ['002893.SZ', '300688.SZ'], '2018-09-10': ['002906.SZ', '002143.SZ', '002443.SZ', '600312.SH'], '2018-09-12': ['002259.SZ'], '2018-09-13': [], '2018-09-14': ['002666.SZ', '002280.SZ'], '2018-09-17': ['000911.SZ'], '2018-09-18': ['603703.SH'], '2018-09-19': ['603843.SH'], '2018-09-20': ['000806.SZ', '000586.SZ', '300483.SZ'], '2018-09-21': ['300247.SZ', '002002.SZ'], '2018-09-25': ['600746.SH', '600297.SH'], '2018-09-26': ['000593.SZ', '300104.SZ'], '2018-09-27': ['600746.SH'], '2018-09-28': [], '2018-10-08': [], '2018-10-10': [], '2018-10-11': ['300749.SZ', '300216.SZ'], '2018-10-12': ['002758.SZ', '002937.SZ', '002827.SZ'], '2018-10-15': ['300131.SZ'], '2018-10-16': ['603936.SH', '002528.SZ', '600239.SH'], '2018-10-17': ['600555.SH', '002054.SZ', '300266.SZ', '300392.SZ'], '2018-10-18': ['300508.SZ', '300748.SZ', '300635.SZ', '300736.SZ'], '2018-10-19': [], '2018-10-22': ['600071.SH', '601619.SH'], '2018-10-23': ['600306.SH', '000622.SZ', '300694.SZ', '600143.SH', '600816.SH', '601990.SH', '601377.SH'], '2018-10-24': ['002654.SZ', '002575.SZ', '002112.SZ'], '2018-10-25': ['002232.SZ', '002451.SZ'], '2018-10-26': ['603999.SH'], '2018-10-29': ['300279.SZ', '300492.SZ', '600173.SH'], '2018-10-31': ['300492.SZ'], '2018-11-01': ['300748.SZ', '300222.SZ', '603996.SH', '000633.SZ'], '2018-11-02': ['000559.SZ', '002689.SZ', '000150.SZ', '000633.SZ'], '2018-11-05': ['300724.SZ', '600319.SH', '300748.SZ', '002575.SZ'], '2018-11-06': ['000917.SZ', '002660.SZ', '600462.SH', '300274.SZ', '300122.SZ'], '2018-11-07': ['600290.SH', '600796.SH', '300688.SZ', '600635.SH', '002328.SZ', '300618.SZ', '600210.SH', '600053.SH', '603366.SH'], '2018-11-08': ['002575.SZ'], '2018-11-09': ['600624.SH', '002054.SZ', '002622.SZ', '000966.SZ', '300464.SZ', '002420.SZ', '600128.SH'], '2018-11-12': ['600683.SH', '300151.SZ'], '2018-11-13': ['600463.SH'], '2018-11-14': ['000835.SZ', '002054.SZ', '000068.SZ', '002571.SZ', '002295.SZ', '000533.SZ', '002584.SZ', '600235.SH', '002114.SZ', '002660.SZ'], '2018-11-15': ['000610.SZ', '300689.SZ', '000068.SZ', '300751.SZ', '002708.SZ'], '2018-11-16': ['603101.SH', '000058.SZ', '300236.SZ', '002177.SZ', '600461.SH'], '2018-11-19': ['000566.SZ', '300234.SZ', '600761.SH', '600053.SH', '600119.SH', '002026.SZ'], '2018-11-20': ['002141.SZ', '000856.SZ'], '2018-11-21': ['600825.SH', '002337.SZ', '300674.SZ'], '2018-11-22': ['002591.SZ', '300682.SZ'], '2018-11-23': ['601319.SH', '002676.SZ', '300449.SZ'], '2018-11-26': ['603220.SH'], '2018-11-27': ['000948.SZ'], '2018-11-28': ['300240.SZ', '603017.SH', '002288.SZ'], '2018-11-29': ['300343.SZ', '600936.SH'], '2018-12-03': ['601858.SH', '300698.SZ', '002103.SZ', '000722.SZ'], '2018-12-04': ['603335.SH'], '2018-12-05': [], '2018-12-06': ['300006.SZ'], '2018-12-07': [], '2018-12-12': ['002076.SZ'], '2018-12-13': ['300585.SZ'], '2018-12-18': ['002243.SZ'], '2018-12-19': ['300091.SZ', '002845.SZ'], '2018-12-21': [], '2018-12-25': ['000531.SZ'], '2018-12-26': ['300687.SZ', '002927.SZ'], '2018-12-27': ['300635.SZ', '300407.SZ', '300265.SZ'], '2018-12-28': ['300545.SZ', '601619.SH'], '2019-01-02': [], '2019-01-03': [], '2019-01-04': ['300125.SZ'], '2019-01-07': ['300215.SZ', '300588.SZ', '300299.SZ', '600571.SH'], '2019-01-08': ['300095.SZ', '600677.SH', '002498.SZ', '600353.SH', '300351.SZ', '002356.SZ', '002130.SZ'], '2019-01-09': ['600452.SH'], '2019-01-10': ['300076.SZ', '300328.SZ'], '2019-01-11': ['002941.SZ', '300096.SZ'], '2019-01-14': ['300111.SZ', '002548.SZ', '601068.SH', '300694.SZ', '600218.SH', '603220.SH', '000018.SZ'], '2019-01-15': [], '2019-01-16': ['600446.SH', '002063.SZ'], '2019-01-18': ['600470.SH', '300116.SZ', '300648.SZ', '600589.SH'], '2019-01-21': ['300693.SZ'], '2019-01-22': ['002755.SZ', '002170.SZ', '300503.SZ'], '2019-01-23': [], '2019-01-24': ['002481.SZ', '002170.SZ', '601811.SH'], '2019-01-25': ['600721.SH'], '2019-01-28': ['300547.SZ', '000637.SZ', '300096.SZ'], '2019-01-29': [], '2019-01-31': ['300250.SZ'], '2019-02-01': ['002011.SZ'], '2019-02-11': ['600532.SH', '000802.SZ'], '2019-02-12': ['600318.SH'], '2019-02-13': ['300097.SZ', '300566.SZ'], '2019-02-14': ['300097.SZ', '000536.SZ', '000725.SZ', '300256.SZ', '300566.SZ', '300128.SZ', '300263.SZ'], '2019-02-15': [], '2019-02-18': ['002045.SZ', '002099.SZ', '300512.SZ', '601208.SH'], '2019-02-19': ['300083.SZ', '002348.SZ', '002426.SZ', '300468.SZ', '002060.SZ', '300545.SZ', '300066.SZ', '600584.SH', '002006.SZ', '002660.SZ', '300466.SZ'], '2019-02-20': ['600135.SH', '600393.SH', '600095.SH'], '2019-02-21': ['002234.SZ', '002565.SZ', '002458.SZ', '600135.SH', '002435.SZ'], '2019-02-22': ['300211.SZ', '300063.SZ', '300555.SZ', '600572.SH'], '2019-02-25': ['300465.SZ', '600226.SH', '002453.SZ', '600061.SH', '002945.SZ', '300059.SZ', '002712.SZ', '300339.SZ', '600128.SH', '300663.SZ', '600643.SH', '600318.SH', '300377.SZ', '603859.SH', '600776.SH'], '2019-02-26': ['300348.SZ', '002657.SZ', '000859.SZ', '600446.SH', '600131.SH', '603383.SH', '002453.SZ', '000070.SZ', '000068.SZ', '600776.SH', '000536.SZ', '600509.SH', '600146.SH', '600331.SH', '601860.SH', '002423.SZ', '300211.SZ', '000563.SZ', '300638.SZ', '300115.SZ'], '2019-02-27': ['002123.SZ', '000666.SZ', '000812.SZ', '002204.SZ', '601106.SH', '300612.SZ']}
tradeday = list(get_trade_days(startdate, '20200202', count=None).strftime('%Y-%m-%d'))
for d in tradeday[:200]:
if d in list(limitdt.keys()):
if len(limitdt[d])==0:
pass
else:
day = tradeday[tradeday.index(d)+1]
stockdata = get_price(limitdt[d],None,day,'1m',['close'],True,'pre',bar_count=241,is_panel=1)
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
plt.style.use('seaborn')
for s in list(stockdata['close'].columns):
pc = stockdata['close'][s].iloc[0]
highlimit = round(pc*1.1,2)
lowlimit = round(pc*0.9,2)
fig = plt.figure()
axes = fig.add_axes([0.1, 0.1, 1, 0.5]) #插入面板
x1_list=[highlimit]+list(stockdata['close'][s])[-240:]
y=np.array(x1_list)
x=np.array(range(0,len(x1_list)))
axes.plot(x, y, 'y')
axes.set_ylabel('price',fontsize=15)
axes.set_title('{} Price trend - {} '.format(day,s),fontsize=18)
#设置X轴
axes.set_xticks([0,30,60,90,120,150,180,210,240])
axes.set_xticklabels(['open','10:00','11:00','11:30','13:00','13:30','14:00','14:30','15:00'], fontsize=15)
#设置y轴
axes.set_yticks([lowlimit,highlimit])
datadf = pd.DataFrame(columns=['stock','date'])
for d in list(limitdt.keys()):
for stock in limitdt[d]:
datadf.loc[d]=[stock,d]
startdate = '20140101'
enddate = '20190227'
stock = list(get_all_securities('stock',enddate).index)
alldata = get_price(stock,startdate,enddate,'1d',['close','low','open','high'],True,'pre',is_panel=1)
closedf = alldata['close']
highdf = alldata['high']
lowdf = alldata['low']
opendf = alldata['open']
datadf['buyprice'] = datadf['date'].apply(lambda x:highdf.loc[x][datadf['stock'][x]])
datadf['当日收盘价'] = datadf['date'].apply(lambda x:closedf.loc[x][datadf['stock'][x]])
datadf = datadf[datadf['date']!='2019-02-25']
datadf = datadf[datadf['date']!='2019-02-26']
datadf = datadf[datadf['date']!='2019-02-27']#没有足够数据算第三天
for t in range(1,4):
txt = str(t)+str('日收盘价')
datadf[txt] = datadf['date'].apply(lambda x:closedf.loc[list(highdf.index)[list(highdf.index.strftime('%Y-%m-%d')).index(x)+t]][datadf['stock'][x]])/datadf['buyprice']-1
txt = str(t)+str('日开盘价')
datadf[txt] = datadf['date'].apply(lambda x:opendf.loc[list(highdf.index)[list(highdf.index.strftime('%Y-%m-%d')).index(x)+t]][datadf['stock'][x]])/datadf['buyprice']-1
txt = str(t)+str('日最高价')
datadf[txt] = datadf['date'].apply(lambda x:highdf.loc[list(highdf.index)[list(highdf.index.strftime('%Y-%m-%d')).index(x)+t]][datadf['stock'][x]])/datadf['buyprice']-1
txt = str(t)+str('日最低价')
datadf[txt] = datadf['date'].apply(lambda x:lowdf.loc[list(highdf.index)[list(highdf.index.strftime('%Y-%m-%d')).index(x)+t]][datadf['stock'][x]])/datadf['buyprice']-1
datadf
stock | date | buyprice | 当日收盘价 | 1日收盘价 | 1日开盘价 | 1日最高价 | 1日最低价 | 2日收盘价 | 2日开盘价 | 2日最高价 | 2日最低价 | 3日收盘价 | 3日开盘价 | 3日最高价 | 3日最低价 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018-04-10 | 300589.SZ | 2018-04-10 | 14.94 | 14.09 | 0.038153 | -0.072289 | 0.038153 | -0.113119 | 0.141901 | 0.037483 | 0.141901 | -0.013387 | 0.027443 | 0.099732 | 0.140562 | 0.027443 |
2015-02-04 | 000875.SZ | 2015-02-04 | 5.28 | 5.28 | 0.100379 | 0.041667 | 0.100379 | 0.009470 | 0.090909 | 0.115530 | 0.181818 | 0.062500 | 0.009470 | 0.045455 | 0.077652 | -0.017045 |
2015-07-14 | 000969.SZ | 2015-07-14 | 12.88 | 12.88 | -0.100155 | -0.011646 | -0.010093 | -0.100155 | -0.068323 | -0.103261 | -0.049689 | -0.190217 | -0.010870 | -0.067547 | -0.004658 | -0.078416 |
2018-11-20 | 000856.SZ | 2018-11-20 | 14.07 | 14.07 | 0.055437 | -0.026297 | 0.100213 | -0.050462 | -0.001421 | 0.016347 | 0.041222 | -0.021322 | 0.014925 | -0.014215 | 0.073205 | -0.015636 |
2014-04-03 | 000918.SZ | 2014-04-03 | 3.11 | 3.03 | -0.045016 | -0.054662 | -0.032154 | -0.083601 | -0.080386 | -0.057878 | -0.045016 | -0.086817 | -0.093248 | -0.077170 | -0.070740 | -0.102894 |
2018-09-27 | 600746.SH | 2018-09-27 | 6.67 | 6.18 | 0.019490 | -0.058471 | 0.019490 | -0.058471 | -0.041979 | 0.038981 | 0.106447 | -0.041979 | -0.079460 | -0.046477 | -0.016492 | -0.092954 |
2018-05-16 | 300175.SZ | 2018-05-16 | 6.18 | 6.18 | 0.006472 | 0.100324 | 0.100324 | 0.003236 | -0.056634 | -0.045307 | -0.019417 | -0.063107 | -0.072816 | -0.087379 | -0.066343 | -0.098706 |
2017-05-02 | 000158.SZ | 2017-05-02 | 11.84 | 11.84 | 0.036318 | 0.041385 | 0.089527 | 0.023649 | 0.007601 | -0.008446 | 0.069257 | -0.028716 | -0.069257 | -0.034628 | -0.007601 | -0.070946 |
2016-11-16 | 002564.SZ | 2016-11-16 | 10.43 | 10.43 | -0.033557 | 0.006711 | 0.029722 | -0.040268 | 0.006711 | -0.018217 | 0.054650 | -0.030681 | 0.018217 | 0.014382 | 0.063279 | -0.012464 |
2018-04-02 | 002712.SZ | 2018-04-02 | 12.77 | 12.59 | -0.054033 | -0.057948 | -0.033673 | -0.066562 | -0.071261 | -0.054033 | -0.043070 | -0.071261 | -0.067345 | -0.069695 | -0.067345 | -0.089272 |
2015-06-24 | 300126.SZ | 2015-06-24 | 45.05 | 45.05 | -0.100111 | -0.002220 | 0.002220 | -0.100111 | -0.190233 | -0.190233 | -0.190233 | -0.190233 | -0.271254 | -0.271254 | -0.271254 | -0.271254 |
2018-12-19 | 002845.SZ | 2018-12-19 | 15.77 | 15.77 | 0.020926 | 0.014585 | 0.093849 | 0.000000 | -0.020292 | -0.015853 | 0.006975 | -0.047559 | 0.016487 | -0.024731 | 0.056436 | -0.034242 |
2017-08-29 | 603042.SH | 2017-08-29 | 33.56 | 33.56 | 0.100417 | -0.021454 | 0.100417 | -0.027414 | 0.076281 | 0.031585 | 0.103397 | 0.008641 | 0.030691 | 0.056317 | 0.093564 | 0.027712 |
2015-10-27 | 600207.SH | 2015-10-27 | 9.56 | 9.56 | 0.100418 | 0.047071 | 0.100418 | 0.035565 | 0.210251 | 0.210251 | 0.210251 | 0.155858 | 0.331590 | 0.315900 | 0.331590 | 0.284519 |
2015-07-21 | 000638.SZ | 2015-07-21 | 15.32 | 15.32 | 0.099869 | 0.054178 | 0.099869 | 0.037859 | 0.174935 | 0.168407 | 0.204308 | 0.095953 | 0.127285 | 0.155352 | 0.207572 | 0.096606 |
2018-01-17 | 300698.SZ | 2018-01-17 | 29.44 | 29.44 | 0.029891 | 0.045177 | 0.096128 | -0.035326 | 0.133152 | -0.000679 | 0.133152 | -0.003057 | 0.019701 | 0.068954 | 0.082541 | 0.019701 |
2017-05-18 | 603728.SH | 2017-05-18 | 24.21 | 24.21 | -0.099959 | -0.036349 | -0.019827 | -0.099959 | -0.190004 | -0.168938 | -0.154895 | -0.190004 | -0.235440 | -0.211070 | -0.202396 | -0.252375 |
2018-11-29 | 600936.SH | 2018-11-29 | 5.10 | 4.77 | -0.154902 | -0.109804 | -0.107843 | -0.158824 | -0.117647 | -0.158824 | -0.090196 | -0.162745 | -0.133333 | -0.133333 | -0.129412 | -0.150980 |
2015-04-22 | 000410.SZ | 2015-04-22 | 27.34 | 27.34 | 0.033650 | 0.023409 | 0.100219 | 0.015728 | 0.087052 | 0.051939 | 0.118508 | 0.034748 | 0.039868 | 0.087052 | 0.096562 | 0.024872 |
2017-08-04 | 000616.SZ | 2017-08-04 | 4.87 | 4.87 | -0.016427 | 0.004107 | 0.016427 | -0.024641 | -0.053388 | -0.045175 | -0.024641 | -0.061602 | -0.063655 | -0.057495 | -0.049281 | -0.067762 |
2015-09-25 | 600876.SH | 2015-09-25 | 28.18 | 28.18 | 0.100071 | 0.069198 | 0.100071 | 0.013485 | 0.210078 | 0.112136 | 0.210078 | 0.112136 | 0.090490 | 0.270405 | 0.282825 | 0.089070 |
2014-12-24 | 002239.SZ | 2014-12-24 | 2.34 | 2.34 | 0.106838 | 0.008547 | 0.106838 | 0.000000 | 0.059829 | 0.158120 | 0.179487 | 0.055556 | -0.008547 | 0.034188 | 0.034188 | -0.025641 |
2015-10-19 | 600397.SH | 2015-10-19 | 7.40 | 7.40 | -0.005405 | 0.047297 | 0.075676 | -0.020270 | -0.105405 | -0.033784 | 0.032432 | -0.105405 | -0.035135 | -0.114865 | -0.016216 | -0.116216 |
2016-12-14 | 600722.SH | 2016-12-14 | 12.08 | 12.08 | 0.100166 | 0.084437 | 0.100166 | 0.039735 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
2015-01-30 | 002740.SZ | 2015-01-30 | 13.87 | 13.87 | -0.090123 | 0.006489 | 0.059841 | -0.091565 | -0.123288 | -0.132660 | -0.106705 | -0.144196 | -0.090844 | -0.122567 | -0.073540 | -0.137707 |
2018-07-04 | 000802.SZ | 2018-07-04 | 13.33 | 13.33 | 0.089272 | 0.079520 | 0.099775 | 0.043511 | 0.198050 | 0.079520 | 0.198050 | 0.060765 | 0.140285 | 0.288822 | 0.288822 | 0.110278 |
2015-07-16 | 600695.SH | 2015-07-16 | 7.63 | 7.63 | 0.099607 | 0.022280 | 0.099607 | 0.006553 | 0.166448 | 0.133683 | 0.195282 | 0.099607 | 0.254260 | 0.166448 | 0.263434 | 0.108781 |
2015-01-14 | 000498.SZ | 2015-01-14 | 5.55 | 5.55 | 0.000000 | 0.070270 | 0.100901 | -0.036036 | -0.019820 | -0.050450 | -0.003604 | -0.059459 | -0.106306 | -0.055856 | -0.052252 | -0.118919 |
2018-09-20 | 300483.SZ | 2018-09-20 | 28.86 | 27.41 | -0.039848 | -0.084893 | -0.013514 | -0.084893 | -0.055787 | -0.060984 | -0.032225 | -0.071033 | -0.063756 | -0.060638 | -0.040194 | -0.068607 |
2018-05-04 | 002889.SZ | 2018-05-04 | 33.28 | 33.28 | 0.027644 | -0.003305 | 0.066707 | -0.014123 | 0.130409 | 0.010216 | 0.130409 | 0.010216 | 0.039062 | 0.081731 | 0.111478 | 0.030048 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2018-10-11 | 300216.SZ | 2018-10-11 | 5.40 | 5.40 | -0.068519 | 0.007407 | 0.007407 | -0.083333 | -0.092593 | -0.101852 | -0.012963 | -0.131481 | -0.001852 | -0.092593 | -0.001852 | -0.118519 |
2015-10-26 | 000019.SZ | 2015-10-26 | 8.18 | 7.97 | -0.057457 | -0.108802 | -0.035452 | -0.113692 | -0.015892 | -0.079462 | 0.036675 | -0.083130 | 0.084352 | -0.013447 | 0.084352 | -0.028117 |
2017-09-01 | 300348.SZ | 2017-09-01 | 23.38 | 23.38 | -0.012404 | 0.010265 | 0.049615 | -0.014115 | 0.020958 | -0.028657 | 0.066724 | -0.028657 | 0.023952 | 0.002994 | 0.049615 | -0.006843 |
2014-08-14 | 300208.SZ | 2014-08-14 | 4.08 | 4.08 | -0.009804 | 0.031863 | 0.053922 | -0.024510 | 0.088235 | -0.004902 | 0.088235 | -0.022059 | 0.110294 | 0.053922 | 0.156863 | 0.053922 |
2018-09-06 | 002848.SZ | 2018-09-06 | 10.01 | 10.01 | 0.099900 | 0.064935 | 0.099900 | 0.002997 | -0.009990 | 0.093906 | 0.144855 | -0.009990 | 0.088911 | -0.046953 | 0.088911 | -0.076923 |
2019-02-13 | 300566.SZ | 2019-02-13 | 14.67 | 14.67 | 0.050443 | 0.100204 | 0.100204 | 0.049761 | 0.085890 | -0.007498 | 0.143149 | -0.010225 | 0.098160 | 0.060668 | 0.102931 | 0.039536 |
2018-10-15 | 300131.SZ | 2018-10-15 | 4.73 | 4.70 | -0.080338 | -0.023256 | -0.010571 | -0.088795 | 0.012685 | -0.090909 | 0.012685 | -0.090909 | 0.010571 | 0.046512 | 0.114165 | 0.000000 |
2018-05-21 | 002828.SZ | 2018-05-21 | 17.92 | 17.92 | 0.100446 | 0.046875 | 0.100446 | 0.019531 | 0.210937 | 0.210937 | 0.210937 | 0.155692 | NaN | NaN | NaN | NaN |
2014-07-11 | 002629.SZ | 2014-07-11 | 7.43 | 7.23 | 0.034993 | -0.026918 | 0.069987 | -0.040377 | -0.018843 | 0.051144 | 0.061911 | -0.033647 | -0.033647 | -0.021534 | 0.017497 | -0.069987 |
2014-12-16 | 002392.SZ | 2014-12-16 | 6.94 | 6.94 | 0.007205 | 0.000000 | 0.034582 | -0.012968 | -0.004323 | -0.012968 | 0.004323 | -0.027378 | -0.043228 | -0.005764 | 0.014409 | -0.070605 |
2015-01-06 | 601918.SH | 2015-01-06 | 6.92 | 6.92 | -0.065029 | -0.052023 | -0.036127 | -0.073699 | 0.028902 | -0.062139 | 0.028902 | -0.072254 | -0.030347 | 0.004335 | 0.010116 | -0.037572 |
2018-12-25 | 000531.SZ | 2018-12-25 | 5.48 | 5.48 | -0.023723 | 0.005474 | 0.054745 | -0.025547 | -0.051095 | -0.032847 | 0.031022 | -0.063869 | -0.076642 | -0.054745 | -0.041971 | -0.078467 |
2017-01-13 | 600576.SH | 2017-01-13 | 22.24 | 22.24 | 0.038219 | -0.060252 | 0.097122 | -0.073291 | 0.076439 | 0.018885 | 0.124101 | -0.007194 | 0.041367 | 0.067896 | 0.094874 | 0.022032 |
2015-07-20 | 002176.SZ | 2015-07-20 | 9.21 | 9.21 | 0.099891 | 0.003257 | 0.099891 | 0.000000 | 0.158523 | 0.131379 | 0.191097 | 0.074919 | 0.183496 | 0.131379 | 0.205212 | 0.121607 |
2015-06-03 | 000558.SZ | 2015-06-03 | 23.96 | 23.96 | -0.020451 | 0.065526 | 0.081803 | -0.096828 | -0.109766 | -0.039649 | -0.038397 | -0.112688 | -0.173623 | -0.126461 | -0.126461 | -0.192821 |
2014-02-28 | 600680.SH | 2014-02-28 | 13.26 | 13.26 | 0.100302 | 0.045249 | 0.100302 | 0.045249 | 0.210407 | 0.118401 | 0.210407 | 0.105581 | 0.331825 | 0.272247 | 0.331825 | 0.272247 |
2015-07-15 | 000837.SZ | 2015-07-15 | 12.77 | 12.23 | -0.027408 | -0.103367 | 0.008614 | -0.136257 | 0.069695 | -0.027408 | 0.069695 | -0.035239 | 0.112764 | 0.084573 | 0.151135 | 0.049334 |
2018-08-01 | 002401.SZ | 2018-08-01 | 11.21 | 11.21 | 0.035682 | 0.001784 | 0.064228 | -0.014273 | -0.012489 | 0.008029 | 0.045495 | -0.013381 | -0.111508 | -0.045495 | -0.040143 | -0.111508 |
2018-08-29 | 603050.SH | 2018-08-29 | 13.64 | 13.64 | 0.079912 | 0.025660 | 0.099707 | -0.019062 | -0.027859 | 0.013930 | 0.021994 | -0.027859 | -0.062317 | -0.066716 | -0.050587 | -0.096041 |
2014-10-20 | 000018.SZ | 2014-10-20 | 3.92 | 3.92 | -0.045918 | -0.017857 | -0.012755 | -0.045918 | -0.084184 | -0.045918 | -0.028061 | -0.084184 | -0.109694 | -0.096939 | -0.079082 | -0.130102 |
2015-07-30 | 300368.SZ | 2015-07-30 | 9.81 | 9.81 | 0.100917 | -0.002039 | 0.100917 | -0.040775 | 0.211009 | 0.113150 | 0.211009 | 0.076453 | 0.332314 | 0.332314 | 0.332314 | 0.298675 |
2015-03-17 | 000752.SZ | 2015-03-17 | 18.10 | 17.65 | -0.020994 | -0.049171 | -0.018785 | -0.054696 | -0.028729 | -0.032044 | -0.022099 | -0.044751 | -0.025414 | -0.029834 | -0.018785 | -0.039779 |
2018-07-27 | 600186.SH | 2018-07-27 | 2.49 | 2.34 | -0.136546 | -0.092369 | -0.048193 | -0.152610 | -0.148594 | -0.128514 | -0.116466 | -0.156627 | -0.136546 | -0.144578 | -0.116466 | -0.156627 |
2018-03-16 | 002264.SZ | 2018-03-16 | 8.95 | 8.95 | 0.100559 | 0.049162 | 0.100559 | 0.039106 | 0.128492 | 0.098324 | 0.173184 | 0.061453 | 0.241341 | 0.092737 | 0.241341 | 0.092737 |
2018-09-10 | 600312.SH | 2018-09-10 | 5.46 | 5.46 | 0.051282 | 0.007326 | 0.089744 | -0.014652 | 0.075092 | 0.016484 | 0.120879 | 0.000000 | 0.117216 | 0.067766 | 0.117216 | 0.056777 |
2017-01-24 | 000605.SZ | 2017-01-24 | 16.59 | 16.59 | -0.050030 | 0.009042 | 0.037975 | -0.076552 | -0.054852 | -0.072333 | -0.018083 | -0.081374 | -0.068113 | -0.059675 | -0.048825 | -0.089210 |
2015-06-12 | 300459.SZ | 2015-06-12 | 8.75 | 8.75 | -0.100571 | -0.100571 | -0.100571 | -0.100571 | -0.192000 | -0.192000 | -0.192000 | -0.192000 | -0.238857 | -0.273143 | -0.195429 | -0.273143 |
2014-07-16 | 000868.SZ | 2014-07-16 | 5.92 | 5.92 | -0.096284 | -0.052365 | -0.042230 | -0.099662 | -0.141892 | -0.116554 | -0.092905 | -0.141892 | -0.130068 | -0.148649 | -0.128378 | -0.162162 |
2015-12-01 | 600165.SH | 2015-12-01 | 26.61 | 26.61 | -0.099962 | -0.092446 | -0.092446 | -0.099962 | -0.065765 | -0.189778 | -0.034949 | -0.189778 | -0.090192 | -0.087561 | -0.022924 | -0.094325 |
2018-12-13 | 300585.SZ | 2018-12-13 | 11.25 | 10.80 | -0.103111 | -0.100444 | -0.073778 | -0.112000 | -0.114667 | -0.111111 | -0.098667 | -0.134222 | -0.133333 | -0.130667 | -0.119111 | -0.148444 |
508 rows × 16 columns
dataclose = datadf[['1日收盘价','2日收盘价','3日收盘价']]
dataclose.describe()
1日收盘价 | 2日收盘价 | 3日收盘价 | |
---|---|---|---|
count | 500.000000 | 493.000000 | 499.000000 |
mean | -0.001599 | -0.004058 | -0.005465 |
std | 0.070997 | 0.101881 | 0.123285 |
min | -0.250679 | -0.310462 | -0.338995 |
25% | -0.054269 | -0.070144 | -0.085253 |
50% | -0.001160 | -0.014862 | -0.021176 |
75% | 0.050653 | 0.059829 | 0.060438 |
max | 0.106838 | 0.215162 | 0.338628 |
dataopen = datadf[['1日开盘价','2日开盘价','3日开盘价']]
dataopen.describe()
1日开盘价 | 2日开盘价 | 3日开盘价 | |
---|---|---|---|
count | 500.000000 | 493.000000 | 499.000000 |
mean | -0.008970 | -0.010114 | -0.010622 |
std | 0.051738 | 0.094574 | 0.117361 |
min | -0.177438 | -0.275815 | -0.307745 |
25% | -0.040579 | -0.069217 | -0.085949 |
50% | -0.003126 | -0.020443 | -0.027778 |
75% | 0.021702 | 0.031447 | 0.041880 |
max | 0.101010 | 0.211526 | 0.332314 |
datahigh = datadf[['1日最高价','2日最高价','3日最高价']]
datahigh.describe()
1日最高价 | 2日最高价 | 3日最高价 | |
---|---|---|---|
count | 500.000000 | 493.000000 | 499.000000 |
mean | 0.038950 | 0.034591 | 0.030486 |
std | 0.056496 | 0.098113 | 0.124961 |
min | -0.151495 | -0.247962 | -0.303668 |
25% | -0.002902 | -0.032316 | -0.054733 |
50% | 0.048349 | 0.018853 | 0.010163 |
75% | 0.099398 | 0.100202 | 0.096591 |
max | 0.106838 | 0.215162 | 0.338710 |
datalow = datadf[['1日最低价','2日最低价','3日最低价']]
datalow.describe()
1日最低价 | 2日最低价 | 3日最低价 | |
---|---|---|---|
count | 500.000000 | 493.000000 | 499.000000 |
mean | -0.044232 | -0.042589 | -0.041151 |
std | 0.054473 | 0.090011 | 0.110356 |
min | -0.250679 | -0.323370 | -0.357337 |
25% | -0.087772 | -0.094737 | -0.112568 |
50% | -0.040260 | -0.049157 | -0.054870 |
75% | -0.008182 | 0.001862 | 0.014093 |
max | 0.100851 | 0.211173 | 0.331852 |
dataclosedf = datadf[['stock','date','1日收盘价','2日收盘价','3日收盘价']]
dataclosedf = dataclosedf.sort_values(by='1日收盘价',ascending=False)
# dataclosedf = dataclosedf.dropna(axis=0,how='any')
dataclosedf
stock | date | 1日收盘价 | 2日收盘价 | 3日收盘价 | |
---|---|---|---|---|---|
2014-12-24 | 002239.SZ | 2014-12-24 | 0.106838 | 0.059829 | -0.008547 |
2015-01-12 | 002738.SZ | 2015-01-12 | 0.102527 | 0.215162 | 0.338628 |
2015-07-13 | 002685.SZ | 2015-07-13 | 0.101179 | -0.009823 | -0.008841 |
2018-11-28 | 002288.SZ | 2018-11-28 | 0.100939 | 0.211268 | 0.333333 |
2015-07-30 | 300368.SZ | 2015-07-30 | 0.100917 | 0.211009 | 0.332314 |
2018-08-08 | 600470.SH | 2018-08-08 | 0.100858 | -0.006438 | -0.062232 |
2015-07-10 | 002446.SZ | 2015-07-10 | 0.100851 | 0.211526 | 0.089064 |
2014-07-28 | 600157.SH | 2014-07-28 | 0.100806 | 0.213710 | 0.266129 |
2018-11-01 | 000633.SZ | 2018-11-01 | 0.100791 | 0.128458 | 0.015810 |
2015-04-02 | 002006.SZ | 2015-04-02 | 0.100775 | 0.136090 | 0.090439 |
2014-08-22 | 300356.SZ | 2014-08-22 | 0.100775 | 0.075305 | 0.160576 |
2018-08-07 | 300392.SZ | 2018-08-07 | 0.100741 | 0.210370 | 0.331852 |
2017-03-15 | 002850.SZ | 2017-03-15 | 0.100696 | 0.054946 | 0.039382 |
2015-06-01 | 300149.SZ | 2015-06-01 | 0.100665 | 0.211530 | 0.101109 |
2015-10-09 | 002684.SZ | 2015-10-09 | 0.100629 | 0.139064 | 0.150943 |
2015-03-16 | 600207.SH | 2015-03-16 | 0.100559 | 0.150838 | 0.113128 |
2018-11-15 | 002708.SZ | 2018-11-15 | 0.100559 | 0.211173 | 0.331844 |
2018-03-16 | 002264.SZ | 2018-03-16 | 0.100559 | 0.128492 | 0.241341 |
2015-04-15 | 002044.SZ | 2015-04-15 | 0.100550 | 0.044776 | 0.147683 |
2014-09-12 | 300161.SZ | 2014-09-12 | 0.100540 | 0.089744 | 0.057355 |
2016-11-01 | 300044.SZ | 2016-11-01 | 0.100524 | 0.067016 | 0.086911 |
2018-05-21 | 002828.SZ | 2018-05-21 | 0.100446 | 0.210937 | NaN |
2015-08-26 | 000628.SZ | 2015-08-26 | 0.100437 | 0.210480 | 0.089083 |
2014-09-19 | 000852.SZ | 2014-09-19 | 0.100434 | 0.115933 | 0.115313 |
2015-10-27 | 600207.SH | 2015-10-27 | 0.100418 | 0.210251 | 0.331590 |
2017-08-29 | 603042.SH | 2017-08-29 | 0.100417 | 0.076281 | 0.030691 |
2015-02-04 | 000875.SZ | 2015-02-04 | 0.100379 | 0.090909 | 0.009470 |
2017-03-13 | 601212.SH | 2017-03-13 | 0.100375 | 0.211069 | 0.332083 |
2015-12-02 | 000668.SZ | 2015-12-02 | 0.100338 | 0.066892 | 0.071778 |
2014-02-28 | 600680.SH | 2014-02-28 | 0.100302 | 0.210407 | 0.331825 |
... | ... | ... | ... | ... | ... |
2018-11-27 | 000948.SZ | 2018-11-27 | -0.114783 | -0.160870 | -0.149565 |
2016-03-08 | 600882.SH | 2016-03-08 | -0.115694 | -0.170020 | -0.195171 |
2017-10-13 | 300062.SZ | 2017-10-13 | -0.116814 | -0.122124 | -0.132743 |
2015-02-03 | 000586.SZ | 2015-02-03 | -0.117314 | -0.149676 | -0.064725 |
2018-12-27 | 300265.SZ | 2018-12-27 | -0.118421 | -0.072368 | 0.020833 |
2017-03-30 | 002040.SZ | 2017-03-30 | -0.122374 | -0.159602 | -0.136380 |
2015-05-14 | 002625.SZ | 2015-05-14 | -0.123490 | -0.044954 | -0.101812 |
2015-10-23 | 300081.SZ | 2015-10-23 | -0.125994 | -0.099694 | -0.185321 |
2018-06-15 | 002423.SZ | 2018-06-15 | -0.133379 | -0.112859 | -0.178523 |
2015-07-27 | 600728.SH | 2015-07-27 | -0.135387 | -0.049427 | -0.114613 |
2018-07-27 | 600186.SH | 2018-07-27 | -0.136546 | -0.148594 | -0.136546 |
2018-07-03 | 002211.SZ | 2018-07-03 | -0.141892 | -0.201351 | -0.229730 |
2017-04-14 | 000616.SZ | 2017-04-14 | -0.145425 | -0.145425 | -0.156863 |
2015-04-27 | 300188.SZ | 2015-04-27 | -0.150334 | NaN | -0.149220 |
2018-12-06 | 300006.SZ | 2018-12-06 | -0.154472 | -0.203252 | -0.199187 |
2015-10-30 | 000019.SZ | 2015-10-30 | -0.154713 | -0.211066 | -0.163934 |
2018-11-29 | 600936.SH | 2018-11-29 | -0.154902 | -0.117647 | -0.133333 |
2018-04-11 | 300705.SZ | 2018-04-11 | -0.164298 | -0.224263 | -0.236742 |
2018-10-26 | 603999.SH | 2018-10-26 | -0.177391 | -0.160000 | -0.161739 |
2014-12-22 | 600169.SH | 2014-12-22 | -0.181612 | -0.205448 | -0.125993 |
2018-10-25 | 002451.SZ | 2018-10-25 | -0.183314 | -0.212691 | -0.203290 |
2019-01-28 | 300096.SZ | 2019-01-28 | -0.250679 | -0.310462 | -0.338995 |
2016-02-17 | 600234.SH | 2016-02-17 | NaN | NaN | NaN |
2017-04-11 | 002774.SZ | 2017-04-11 | NaN | NaN | -0.100352 |
2014-02-12 | 000971.SZ | 2014-02-12 | NaN | NaN | -0.027473 |
2015-03-24 | 300310.SZ | 2015-03-24 | NaN | -0.071142 | -0.044088 |
2018-01-10 | 600652.SH | 2018-01-10 | NaN | NaN | -0.083893 |
2016-03-03 | 000982.SZ | 2016-03-03 | NaN | NaN | NaN |
2017-04-12 | 000605.SZ | 2017-04-12 | NaN | NaN | -0.100194 |
2018-05-14 | 002930.SZ | 2018-05-14 | NaN | NaN | 0.099928 |
508 rows × 5 columns
dt = dataclosedf
dt = dt.sort_values(by='date')
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
plt.style.use('seaborn')
fig = plt.figure()
axes = fig.add_axes([0.1, 0.1, 1, 0.618]) #插入面板
x1_list=list(dt['1日收盘价'])
y=np.array(x1_list)
x=np.array(range(0,len(x1_list)))
axes.scatter(x,y,c='tomato')
axes.set_xlabel('time',fontsize=15)
axes.set_ylabel('down_up',fontsize=15)
axes.set_title(' one day distribution',fontsize=18)
# #设置X轴
axes.set_xticks([0,100,200,300,400,500])
axes.set_xticklabels([list(dt.index)[0],list(dt.index)[100],list(dt.index)[200],list(dt.index)[300],list(dt.index)[400],list(dt.index)[500]],fontsize=15)
plt.style.use('seaborn')
fig = plt.figure()
axes = fig.add_axes([0.1, 0.1, 1, 0.618]) #插入面板
x1_list=list(dt['2日收盘价'])
y=np.array(x1_list)
x=np.array(range(0,len(x1_list)))
axes.scatter(x,y,c='tomato')
axes.set_xlabel('time',fontsize=15)
axes.set_ylabel('down_up',fontsize=15)
axes.set_title(' two day distribution',fontsize=18)
# #设置X轴
axes.set_xticks([0,100,200,300,400,500])
axes.set_xticklabels([list(dt.index)[0],list(dt.index)[100],list(dt.index)[200],list(dt.index)[300],list(dt.index)[400],list(dt.index)[500]],fontsize=15)
plt.style.use('seaborn')
fig = plt.figure()
axes = fig.add_axes([0.1, 0.1, 1, 0.618]) #插入面板
x1_list=list(dt['3日收盘价'])
y=np.array(x1_list)
x=np.array(range(0,len(x1_list)))
axes.scatter(x,y,c='tomato')
axes.set_xlabel('time',fontsize=15)
axes.set_ylabel('down_up',fontsize=15)
axes.set_title(' three day distribution',fontsize=18)
# #设置X轴
axes.set_xticks([0,100,200,300,400,500])
axes.set_xticklabels([list(dt.index)[0],list(dt.index)[100],list(dt.index)[200],list(dt.index)[300],list(dt.index)[400],list(dt.index)[500]],fontsize=15)
[<matplotlib.text.Text at 0x7efb3f5bbc50>, <matplotlib.text.Text at 0x7efb445ddba8>, <matplotlib.text.Text at 0x7efb448cacc0>, <matplotlib.text.Text at 0x7efb448ca3c8>, <matplotlib.text.Text at 0x7efb4450a080>, <matplotlib.text.Text at 0x7efb443d3ac8>]
labeldt = dataclosedf
labeldt['1日收盘价'] = labeldt['1日收盘价'].apply(lambda x:1 if x>0 else -1)
labeldt['2日收盘价'] = labeldt['2日收盘价'].apply(lambda x:1 if x>0 else -1)
labeldt['3日收盘价'] = labeldt['3日收盘价'].apply(lambda x:1 if x>0 else -1)
labeldt = labeldt.sort_values(by='date')
labeldt
stock | date | 1日收盘价 | 2日收盘价 | 3日收盘价 | |
---|---|---|---|---|---|
2014-01-16 | 000767.SZ | 2014-01-16 | -1 | -1 | -1 |
2014-02-12 | 000971.SZ | 2014-02-12 | -1 | -1 | -1 |
2014-02-21 | 000554.SZ | 2014-02-21 | -1 | -1 | -1 |
2014-02-28 | 600680.SH | 2014-02-28 | 1 | 1 | 1 |
2014-03-10 | 300116.SZ | 2014-03-10 | -1 | -1 | -1 |
2014-03-13 | 000923.SZ | 2014-03-13 | -1 | 1 | 1 |
2014-03-27 | 000687.SZ | 2014-03-27 | -1 | -1 | -1 |
2014-04-03 | 000918.SZ | 2014-04-03 | -1 | -1 | -1 |
2014-04-10 | 300278.SZ | 2014-04-10 | 1 | 1 | 1 |
2014-04-30 | 601001.SH | 2014-04-30 | 1 | -1 | -1 |
2014-05-21 | 002660.SZ | 2014-05-21 | 1 | 1 | 1 |
2014-06-04 | 600601.SH | 2014-06-04 | -1 | -1 | -1 |
2014-06-05 | 600074.SH | 2014-06-05 | -1 | -1 | -1 |
2014-06-06 | 002535.SZ | 2014-06-06 | 1 | 1 | 1 |
2014-06-16 | 300198.SZ | 2014-06-16 | -1 | -1 | -1 |
2014-06-30 | 002093.SZ | 2014-06-30 | -1 | -1 | -1 |
2014-07-02 | 300288.SZ | 2014-07-02 | 1 | 1 | 1 |
2014-07-04 | 002070.SZ | 2014-07-04 | -1 | -1 | -1 |
2014-07-07 | 600568.SH | 2014-07-07 | -1 | 1 | 1 |
2014-07-11 | 002629.SZ | 2014-07-11 | 1 | -1 | -1 |
2014-07-16 | 000868.SZ | 2014-07-16 | -1 | -1 | -1 |
2014-07-25 | 600319.SH | 2014-07-25 | -1 | 1 | 1 |
2014-07-28 | 600157.SH | 2014-07-28 | 1 | 1 | 1 |
2014-08-07 | 600556.SH | 2014-08-07 | -1 | -1 | -1 |
2014-08-11 | 600222.SH | 2014-08-11 | -1 | -1 | -1 |
2014-08-14 | 300208.SZ | 2014-08-14 | -1 | 1 | 1 |
2014-08-18 | 002125.SZ | 2014-08-18 | 1 | -1 | 1 |
2014-08-21 | 000922.SZ | 2014-08-21 | 1 | 1 | 1 |
2014-08-22 | 300356.SZ | 2014-08-22 | 1 | 1 | 1 |
2014-09-02 | 600691.SH | 2014-09-02 | 1 | 1 | 1 |
... | ... | ... | ... | ... | ... |
2018-12-19 | 002845.SZ | 2018-12-19 | 1 | -1 | 1 |
2018-12-25 | 000531.SZ | 2018-12-25 | -1 | -1 | -1 |
2018-12-26 | 002927.SZ | 2018-12-26 | -1 | -1 | -1 |
2018-12-27 | 300265.SZ | 2018-12-27 | -1 | -1 | 1 |
2018-12-28 | 601619.SH | 2018-12-28 | -1 | -1 | -1 |
2019-01-04 | 300125.SZ | 2019-01-04 | 1 | 1 | 1 |
2019-01-07 | 600571.SH | 2019-01-07 | -1 | -1 | -1 |
2019-01-08 | 002130.SZ | 2019-01-08 | -1 | -1 | -1 |
2019-01-09 | 600452.SH | 2019-01-09 | 1 | 1 | 1 |
2019-01-10 | 300328.SZ | 2019-01-10 | -1 | -1 | -1 |
2019-01-11 | 300096.SZ | 2019-01-11 | -1 | -1 | -1 |
2019-01-14 | 000018.SZ | 2019-01-14 | -1 | -1 | -1 |
2019-01-16 | 002063.SZ | 2019-01-16 | 1 | 1 | 1 |
2019-01-18 | 600589.SH | 2019-01-18 | 1 | -1 | -1 |
2019-01-21 | 300693.SZ | 2019-01-21 | -1 | 1 | 1 |
2019-01-22 | 300503.SZ | 2019-01-22 | -1 | -1 | -1 |
2019-01-24 | 601811.SH | 2019-01-24 | 1 | -1 | -1 |
2019-01-25 | 600721.SH | 2019-01-25 | 1 | -1 | -1 |
2019-01-28 | 300096.SZ | 2019-01-28 | -1 | -1 | -1 |
2019-01-31 | 300250.SZ | 2019-01-31 | 1 | 1 | 1 |
2019-02-01 | 002011.SZ | 2019-02-01 | -1 | -1 | -1 |
2019-02-11 | 000802.SZ | 2019-02-11 | -1 | -1 | -1 |
2019-02-12 | 600318.SH | 2019-02-12 | 1 | -1 | -1 |
2019-02-13 | 300566.SZ | 2019-02-13 | 1 | 1 | 1 |
2019-02-14 | 300263.SZ | 2019-02-14 | -1 | 1 | 1 |
2019-02-18 | 601208.SH | 2019-02-18 | -1 | -1 | -1 |
2019-02-19 | 300466.SZ | 2019-02-19 | -1 | -1 | -1 |
2019-02-20 | 600095.SH | 2019-02-20 | -1 | -1 | -1 |
2019-02-21 | 002435.SZ | 2019-02-21 | -1 | 1 | -1 |
2019-02-22 | 600572.SH | 2019-02-22 | 1 | 1 | 1 |
508 rows × 5 columns
tradeday = list(get_trade_days(startdate, '20200202', count=None).strftime('%Y-%m-%d'))
timelist = []
trlist= []
lplist =[]
q_trlist = []
for d in tradeday:
time = 0
tr = 0
lp = 0
q_tr = 0
if d in list(labeldt['date']):
stock = labeldt['stock'][d]
day = tradeday[tradeday.index(d)+1]
stockdata = get_price(stock,None,day,'1m',['close','high','low','open','turnover_rate'],True,'pre',bar_count=241,is_panel=0)
pc = stockdata.iloc[0].close
highlimit = round(pc*1.1,2)
stockdata = stockdata.iloc[-240:]
for m in list(range(0,240)):
rc = stockdata.iloc[m].close
h = stockdata.iloc[(m+1)].high
if rc == highlimit:
q_tr +=stockdata.iloc[m].turnover_rate
if rc<highlimit:
time += 1
tr +=stockdata.iloc[m].turnover_rate
lp = min(stockdata.iloc[m].low/highlimit-1,lp)
if rc<highlimit and h == highlimit:
break
if time>0:
timelist.append(time)
trlist.append(round(tr,2))
lplist.append(round(lp*100,2))
q_trlist.append(round(q_tr,2))
timelist
[2, 209, 1, 1, 1, 1, 25, 1, 2, 1, 2, 1, 1, 3, 1, 5, 228, 19, 11, 60, 1, 1, 1, 6, 95, 3, 1, 211, 1, 6, 2, 1, 6, 11, 102, 1, 4, 135, 69, 2, 1, 1, 236, 149, 52, 6, 3, 2, 2, 1, 6, 113, 1, 1, 1, 4, 38, 1, 6, 1, 14, 180, 1, 1, 1, 42, 1, 41, 2, 1, 7, 33, 31, 2, 43, 26, 1, 1, 126, 1, 5, 30, 132, 1, 5, 65, 4, 2, 5, 5, 20, 22, 2, 6, 166, 1, 2, 6, 1, 1, 4, 26, 3, 2, 4, 1, 3, 1, 4, 25, 2, 2, 83, 1, 5, 7, 3, 3, 1, 1, 8, 184, 19, 2, 1, 187, 1, 2, 4, 3, 56, 10, 2, 15, 2, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 2, 1, 8, 51, 2, 2, 1, 2, 2, 1, 1, 3, 1, 60, 2, 1, 1, 3, 1, 2, 1, 2, 228, 5, 27, 179, 1, 1, 21, 8, 1, 1, 17, 1, 82, 1, 1, 1, 2, 84, 2, 1, 148, 2, 1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 2, 8, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 47, 2, 171, 1, 1, 1, 2, 4, 1, 1, 2, 2, 120, 1, 30, 3, 1, 1, 1, 1, 1, 1, 106, 183, 1, 1, 26, 1, 127, 18, 1, 2, 4, 1, 1, 2, 1, 1, 2, 1, 16, 201, 3, 88, 1, 1, 1, 53, 1, 1, 2, 1, 1, 1, 2, 1, 5, 1, 9, 8, 28, 1, 156, 1, 43, 5, 24, 16, 2, 1, 5, 1, 10, 1, 1, 33, 203, 1, 1, 7, 31, 55, 229, 2, 1, 1, 1, 118, 45, 2, 2, 2, 1, 77, 2, 120, 2, 45, 58, 2, 2, 22, 1, 1, 1, 4, 1, 6, 3, 1, 140, 6, 65, 40, 1, 43, 23, 1, 5, 10, 1, 1, 1, 6, 1, 181, 5, 1, 1, 1, 34, 3, 7, 1, 86, 1, 1, 1, 10, 1, 2, 1, 1, 10, 1, 10, 66, 1, 114, 1, 1, 1, 1, 12, 189, 1, 1, 7, 1, 11, 1, 114, 1, 12, 1, 2, 1, 17, 1, 1, 42, 1, 1, 2, 31, 1, 2, 1, 1, 6, 2, 4, 1, 13, 1, 1, 75, 15, 1, 21, 3, 1, 27, 13, 1, 6, 2, 10, 1, 1, 1, 1, 1, 2, 1, 46, 1, 2, 1, 1, 3, 125, 1, 1, 40, 1, 47, 1, 2, 1, 5, 1, 1, 2, 26, 1, 1, 22, 1, 30, 25, 3, 4, 2, 5, 4, 1, 108, 23, 1, 1, 1, 3, 2, 1, 1, 113, 1, 1, 1, 1, 2, 1, 1, 27, 1, 1, 11, 154, 1, 58, 1, 1, 42, 84, 5, 2, 1, 2, 3, 11, 6, 1, 1, 27, 9, 7, 6, 2, 1, 1, 1, 1, 175, 1, 15, 1, 2, 1, 2, 91, 1, 1, 1, 2, 5]
labeldt['time'] = timelist
labeldt['Change'] = trlist
labeldt['drop range'] = lplist
labeldt['limit Change'] = q_trlist
labeldt
stock | date | 1日收盘价 | 2日收盘价 | 3日收盘价 | time | Change | drop range | limit Change | |
---|---|---|---|---|---|---|---|---|---|
2014-01-16 | 000767.SZ | 2014-01-16 | -1 | -1 | -1 | 2 | 0.23 | -2.27 | 0.00 |
2014-02-12 | 000971.SZ | 2014-02-12 | -1 | -1 | -1 | 209 | 10.74 | -7.14 | 0.00 |
2014-02-21 | 000554.SZ | 2014-02-21 | -1 | -1 | -1 | 1 | 3.99 | -1.19 | 9.58 |
2014-02-28 | 600680.SH | 2014-02-28 | 1 | 1 | 1 | 1 | 0.79 | -0.60 | 1.95 |
2014-03-10 | 300116.SZ | 2014-03-10 | -1 | -1 | -1 | 1 | 1.16 | -1.14 | 15.01 |
2014-03-13 | 000923.SZ | 2014-03-13 | -1 | 1 | 1 | 1 | 1.42 | -1.99 | 2.48 |
2014-03-27 | 000687.SZ | 2014-03-27 | -1 | -1 | -1 | 25 | 8.88 | -7.78 | 1.11 |
2014-04-03 | 000918.SZ | 2014-04-03 | -1 | -1 | -1 | 1 | 0.68 | -4.82 | 0.43 |
2014-04-10 | 300278.SZ | 2014-04-10 | 1 | 1 | 1 | 2 | 4.56 | -2.59 | 3.06 |
2014-04-30 | 601001.SH | 2014-04-30 | 1 | -1 | -1 | 1 | 0.17 | -0.81 | 0.64 |
2014-05-21 | 002660.SZ | 2014-05-21 | 1 | 1 | 1 | 2 | 2.72 | -1.87 | 0.88 |
2014-06-04 | 600601.SH | 2014-06-04 | -1 | -1 | -1 | 1 | 1.00 | -2.28 | 0.00 |
2014-06-05 | 600074.SH | 2014-06-05 | -1 | -1 | -1 | 1 | 1.00 | -1.17 | 2.63 |
2014-06-06 | 002535.SZ | 2014-06-06 | 1 | 1 | 1 | 3 | 2.15 | -2.86 | 1.05 |
2014-06-16 | 300198.SZ | 2014-06-16 | -1 | -1 | -1 | 1 | 1.01 | -3.84 | 1.28 |
2014-06-30 | 002093.SZ | 2014-06-30 | -1 | -1 | -1 | 5 | 3.30 | -3.93 | 0.00 |
2014-07-02 | 300288.SZ | 2014-07-02 | 1 | 1 | 1 | 228 | 20.97 | -4.61 | 4.82 |
2014-07-04 | 002070.SZ | 2014-07-04 | -1 | -1 | -1 | 19 | 7.00 | -8.27 | 0.60 |
2014-07-07 | 600568.SH | 2014-07-07 | -1 | 1 | 1 | 11 | 3.71 | -5.23 | 0.00 |
2014-07-11 | 002629.SZ | 2014-07-11 | 1 | -1 | -1 | 60 | 14.15 | -5.76 | 3.86 |
2014-07-16 | 000868.SZ | 2014-07-16 | -1 | -1 | -1 | 1 | 0.69 | -2.19 | 5.31 |
2014-07-25 | 600319.SH | 2014-07-25 | -1 | 1 | 1 | 1 | 1.57 | -1.83 | 3.54 |
2014-07-28 | 600157.SH | 2014-07-28 | 1 | 1 | 1 | 1 | 1.48 | -2.11 | 4.34 |
2014-08-07 | 600556.SH | 2014-08-07 | -1 | -1 | -1 | 6 | 4.43 | -5.58 | 0.00 |
2014-08-11 | 600222.SH | 2014-08-11 | -1 | -1 | -1 | 95 | 4.91 | -5.48 | 0.00 |
2014-08-14 | 300208.SZ | 2014-08-14 | -1 | 1 | 1 | 3 | 2.98 | -2.43 | 3.87 |
2014-08-18 | 002125.SZ | 2014-08-18 | 1 | -1 | 1 | 1 | 0.73 | -1.55 | 5.67 |
2014-08-21 | 000922.SZ | 2014-08-21 | 1 | 1 | 1 | 211 | 20.19 | -12.07 | 0.00 |
2014-08-22 | 300356.SZ | 2014-08-22 | 1 | 1 | 1 | 1 | 1.64 | -2.07 | 12.18 |
2014-09-02 | 600691.SH | 2014-09-02 | 1 | 1 | 1 | 6 | 1.92 | -5.09 | 0.00 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2018-12-19 | 002845.SZ | 2018-12-19 | 1 | -1 | 1 | 2 | 1.35 | -0.82 | 5.63 |
2018-12-25 | 000531.SZ | 2018-12-25 | -1 | -1 | -1 | 1 | 0.26 | -1.28 | 0.00 |
2018-12-26 | 002927.SZ | 2018-12-26 | -1 | -1 | -1 | 2 | 5.88 | -2.72 | 11.84 |
2018-12-27 | 300265.SZ | 2018-12-27 | -1 | -1 | 1 | 3 | 1.06 | -4.61 | 1.83 |
2018-12-28 | 601619.SH | 2018-12-28 | -1 | -1 | -1 | 11 | 1.55 | -2.54 | 3.17 |
2019-01-04 | 300125.SZ | 2019-01-04 | 1 | 1 | 1 | 6 | 1.15 | -2.67 | 0.20 |
2019-01-07 | 600571.SH | 2019-01-07 | -1 | -1 | -1 | 1 | 1.40 | -1.16 | 0.50 |
2019-01-08 | 002130.SZ | 2019-01-08 | -1 | -1 | -1 | 1 | 1.08 | -1.43 | 2.39 |
2019-01-09 | 600452.SH | 2019-01-09 | 1 | 1 | 1 | 27 | 0.57 | -3.31 | 0.00 |
2019-01-10 | 300328.SZ | 2019-01-10 | -1 | -1 | -1 | 9 | 2.36 | -4.15 | 2.79 |
2019-01-11 | 300096.SZ | 2019-01-11 | -1 | -1 | -1 | 7 | 0.71 | -1.74 | 1.60 |
2019-01-14 | 000018.SZ | 2019-01-14 | -1 | -1 | -1 | 6 | 3.54 | -6.14 | 0.64 |
2019-01-16 | 002063.SZ | 2019-01-16 | 1 | 1 | 1 | 2 | 1.33 | -3.46 | 0.57 |
2019-01-18 | 600589.SH | 2019-01-18 | 1 | -1 | -1 | 1 | 0.94 | -0.21 | 0.56 |
2019-01-21 | 300693.SZ | 2019-01-21 | -1 | 1 | 1 | 1 | 3.01 | -1.63 | 3.94 |
2019-01-22 | 300503.SZ | 2019-01-22 | -1 | -1 | -1 | 1 | 1.47 | -1.62 | 1.12 |
2019-01-24 | 601811.SH | 2019-01-24 | 1 | -1 | -1 | 1 | 1.78 | -2.43 | 7.48 |
2019-01-25 | 600721.SH | 2019-01-25 | 1 | -1 | -1 | 175 | 3.81 | -4.69 | 0.48 |
2019-01-28 | 300096.SZ | 2019-01-28 | -1 | -1 | -1 | 1 | 2.47 | -4.14 | 0.78 |
2019-01-31 | 300250.SZ | 2019-01-31 | 1 | 1 | 1 | 15 | 1.20 | -1.48 | 4.80 |
2019-02-01 | 002011.SZ | 2019-02-01 | -1 | -1 | -1 | 1 | 1.27 | -3.88 | 1.30 |
2019-02-11 | 000802.SZ | 2019-02-11 | -1 | -1 | -1 | 2 | 3.23 | -2.62 | 2.11 |
2019-02-12 | 600318.SH | 2019-02-12 | 1 | -1 | -1 | 1 | 0.47 | -0.70 | 0.47 |
2019-02-13 | 300566.SZ | 2019-02-13 | 1 | 1 | 1 | 2 | 2.42 | -2.32 | 0.00 |
2019-02-14 | 300263.SZ | 2019-02-14 | -1 | 1 | 1 | 91 | 10.91 | -9.18 | 0.70 |
2019-02-18 | 601208.SH | 2019-02-18 | -1 | -1 | -1 | 1 | 0.91 | -0.81 | 9.70 |
2019-02-19 | 300466.SZ | 2019-02-19 | -1 | -1 | -1 | 1 | 0.81 | -0.30 | 2.03 |
2019-02-20 | 600095.SH | 2019-02-20 | -1 | -1 | -1 | 1 | 1.69 | -0.43 | 0.91 |
2019-02-21 | 002435.SZ | 2019-02-21 | -1 | 1 | -1 | 2 | 2.42 | -4.24 | 1.20 |
2019-02-22 | 600572.SH | 2019-02-22 | 1 | 1 | 1 | 5 | 2.10 | -3.77 | 0.00 |
508 rows × 9 columns
updt = labeldt[labeldt['1日收盘价']==1]
downdt = labeldt[labeldt['1日收盘价']==-1]
label = ['time','Change','drop range','limit Change']
from mpl_toolkits.mplot3d import Axes3D
xsup1 = updt[label[0]]
xsup2 = updt[label[1]]
xsup3 = updt[label[2]]
xsdown1 = downdt[label[0]]
xsdown2 = downdt[label[1]]
xsdown3 = downdt[label[2]]
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(xsup1,xsup2,xsup3,c='tomato')
ax.scatter(xsdown1,xsdown2,xsdown3,c='g')
ax.set_xlabel(label[0],fontsize=12)
ax.set_ylabel(label[1],fontsize=12)
ax.set_zlabel(label[2],fontsize=12)
ax.set_title('one day Data space 3D ',fontsize=20)
plt.show()
for l in label:
fig = plt.figure()
axes = fig.add_axes([0.1, 0.1, 1, 0.618])
x1_list=list(updt[l])
y=np.array(x1_list)
x=np.array(range(0,len(x1_list)))
axes.scatter(x,y,c='tomato')
x1_list=list(downdt[l])
y=np.array(x1_list)
x=np.array(range(0,len(x1_list)))
axes.scatter(x,y,c='g')
axes.set_ylabel('value',fontsize=15)
axes.set_title(l,fontsize=20)
labeldt
label = ['time','Change','drop range','limit Change']
train = labeldt[:300]
test = labeldt[-200:]
X=train[label]
Y=train['1日收盘价']
X_test=test[label]
Y_test=test['1日收盘价']
from sklearn import svm
model = svm.SVC(C=1, kernel='rbf', gamma=0.5, decision_function_shape='ovo')
model.fit(X, Y)
print('训练时,预测成功率 {}'.format(round(np.mean(model.predict(X)==Y),2)))
print('测试时,预测成功率 {}'.format(round(np.mean(model.predict(X_test)==Y_test),2)))
训练时,预测成功率 0.88 测试时,预测成功率 0.51
dataclosedf = datadf#[['stock','date','1日收盘价','2日收盘价','3日收盘价']]
dataclosedf = dataclosedf.sort_values(by='1日收盘价',ascending=False)
tradeday = list(get_trade_days(startdate, '20200202', count=None).strftime('%Y-%m-%d'))
timelist = []
trlist= []
lplist =[]
q_trlist = []
for d in tradeday:
time = 0
tr = 0
lp = 0
q_tr = 0
if d in list(labeldt['date']):
stock = labeldt['stock'][d]
day = tradeday[tradeday.index(d)+1]
stockdata = get_price(stock,None,day,'1m',['close','high','low','open','turnover_rate'],True,'pre',bar_count=241,is_panel=0)
pc = stockdata.iloc[0].close
highlimit = round(pc*1.1,2)
stockdata = stockdata.iloc[-240:]
for m in list(range(0,240)):
rc = stockdata.iloc[m].close
h = stockdata.iloc[(m+1)].high
if rc == highlimit:
q_tr +=stockdata.iloc[m].turnover_rate
if rc<highlimit:
time += 1
tr +=stockdata.iloc[m].turnover_rate
lp = min(stockdata.iloc[m].low/highlimit-1,lp)
if rc<highlimit and h == highlimit:
break
if time>0:
timelist.append(time)
trlist.append(round(tr,2))
lplist.append(round(lp*100,2))
q_trlist.append(round(q_tr,2))
dataclosedf['time'] = timelist
dataclosedf['Change'] = trlist
dataclosedf['drop range'] = lplist
dataclosedf['limit Change'] = q_trlist
dataclosedf
stock | date | buyprice | 当日收盘价 | 1日收盘价 | 1日开盘价 | 1日最高价 | 1日最低价 | 2日收盘价 | 2日开盘价 | 2日最高价 | 2日最低价 | 3日收盘价 | 3日开盘价 | 3日最高价 | 3日最低价 | time | Change | drop range | limit Change | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2014-12-24 | 002239.SZ | 2014-12-24 | 2.34 | 2.34 | 0.106838 | 0.008547 | 0.106838 | 0.000000 | 0.059829 | 0.158120 | 0.179487 | 0.055556 | -0.008547 | 0.034188 | 0.034188 | -0.025641 | 2 | 0.23 | -2.27 | 0.00 |
2015-01-12 | 002738.SZ | 2015-01-12 | 13.85 | 13.85 | 0.102527 | 0.010108 | 0.102527 | -0.031047 | 0.215162 | 0.156679 | 0.215162 | 0.133574 | 0.338628 | 0.257762 | 0.338628 | 0.246209 | 209 | 10.74 | -7.14 | 0.00 |
2015-07-13 | 002685.SZ | 2015-07-13 | 10.18 | 10.18 | 0.101179 | 0.044204 | 0.101179 | 0.015717 | -0.009823 | 0.093320 | 0.098232 | -0.009823 | -0.008841 | -0.009823 | 0.040275 | -0.110020 | 1 | 3.99 | -1.19 | 9.58 |
2018-11-28 | 002288.SZ | 2018-11-28 | 4.26 | 4.26 | 0.100939 | -0.056338 | 0.100939 | -0.056338 | 0.211268 | 0.131455 | 0.211268 | 0.068075 | 0.333333 | 0.291080 | 0.333333 | 0.272300 | 1 | 0.79 | -0.60 | 1.95 |
2015-07-30 | 300368.SZ | 2015-07-30 | 9.81 | 9.81 | 0.100917 | -0.002039 | 0.100917 | -0.040775 | 0.211009 | 0.113150 | 0.211009 | 0.076453 | 0.332314 | 0.332314 | 0.332314 | 0.298675 | 1 | 1.16 | -1.14 | 15.01 |
2018-08-08 | 600470.SH | 2018-08-08 | 4.66 | 4.66 | 0.100858 | -0.034335 | 0.100858 | -0.036481 | -0.006438 | 0.072961 | 0.094421 | -0.008584 | -0.062232 | -0.051502 | -0.040773 | -0.081545 | 1 | 1.42 | -1.99 | 2.48 |
2015-07-10 | 002446.SZ | 2015-07-10 | 15.27 | 15.27 | 0.100851 | 0.100851 | 0.100851 | 0.100851 | 0.211526 | 0.211526 | 0.211526 | 0.138179 | 0.089064 | 0.151277 | 0.174198 | 0.089064 | 25 | 8.88 | -7.78 | 1.11 |
2014-07-28 | 600157.SH | 2014-07-28 | 2.48 | 2.48 | 0.100806 | -0.004032 | 0.100806 | -0.012097 | 0.213710 | 0.153226 | 0.213710 | 0.137097 | 0.266129 | 0.262097 | 0.338710 | 0.241935 | 1 | 0.68 | -4.82 | 0.43 |
2018-11-01 | 000633.SZ | 2018-11-01 | 5.06 | 5.06 | 0.100791 | 0.100791 | 0.100791 | 0.081028 | 0.128458 | 0.106719 | 0.183794 | 0.096838 | 0.015810 | 0.051383 | 0.065217 | 0.015810 | 2 | 4.56 | -2.59 | 3.06 |
2015-04-02 | 002006.SZ | 2015-04-02 | 11.61 | 11.61 | 0.100775 | 0.088717 | 0.100775 | 0.063738 | 0.136090 | 0.193798 | 0.193798 | 0.074074 | 0.090439 | 0.114556 | 0.114556 | 0.055986 | 1 | 0.17 | -0.81 | 0.64 |
2014-08-22 | 300356.SZ | 2014-08-22 | 9.03 | 9.03 | 0.100775 | 0.014396 | 0.100775 | 0.014396 | 0.075305 | 0.071982 | 0.087486 | 0.047619 | 0.160576 | 0.107420 | 0.182724 | 0.091916 | 2 | 2.72 | -1.87 | 0.88 |
2018-08-07 | 300392.SZ | 2018-08-07 | 6.75 | 6.75 | 0.100741 | 0.044444 | 0.100741 | 0.038519 | 0.210370 | 0.210370 | 0.210370 | 0.133333 | 0.331852 | 0.331852 | 0.331852 | 0.331852 | 1 | 1.00 | -2.28 | 0.00 |
2017-03-15 | 002850.SZ | 2017-03-15 | 84.81 | 84.81 | 0.100696 | 0.047046 | 0.100696 | 0.031364 | 0.054946 | 0.101167 | 0.141729 | 0.047046 | 0.039382 | 0.031246 | 0.053060 | 0.000000 | 1 | 1.00 | -1.17 | 2.63 |
2015-06-01 | 300149.SZ | 2015-06-01 | 22.55 | 22.55 | 0.100665 | 0.100665 | 0.100665 | 0.053659 | 0.211530 | 0.211086 | 0.211530 | 0.189357 | 0.101109 | 0.191131 | 0.191131 | 0.089579 | 3 | 2.15 | -2.86 | 1.05 |
2015-10-09 | 002684.SZ | 2015-10-09 | 14.31 | 14.31 | 0.100629 | 0.022362 | 0.100629 | 0.022362 | 0.139064 | 0.116003 | 0.184486 | 0.079665 | 0.150943 | 0.127184 | 0.206848 | 0.097834 | 1 | 1.01 | -3.84 | 1.28 |
2015-03-16 | 600207.SH | 2015-03-16 | 7.16 | 7.16 | 0.100559 | 0.005587 | 0.100559 | -0.005587 | 0.150838 | 0.166201 | 0.210894 | 0.117318 | 0.113128 | 0.157821 | 0.157821 | 0.079609 | 5 | 3.30 | -3.93 | 0.00 |
2018-11-15 | 002708.SZ | 2018-11-15 | 8.95 | 8.95 | 0.100559 | 0.032402 | 0.100559 | 0.011173 | 0.211173 | 0.211173 | 0.211173 | 0.211173 | 0.331844 | 0.229050 | 0.331844 | 0.186592 | 228 | 20.97 | -4.61 | 4.82 |
2018-03-16 | 002264.SZ | 2018-03-16 | 8.95 | 8.95 | 0.100559 | 0.049162 | 0.100559 | 0.039106 | 0.128492 | 0.098324 | 0.173184 | 0.061453 | 0.241341 | 0.092737 | 0.241341 | 0.092737 | 19 | 7.00 | -8.27 | 0.60 |
2015-04-15 | 002044.SZ | 2015-04-15 | 12.73 | 12.73 | 0.100550 | 0.100550 | 0.100550 | 0.076198 | 0.044776 | 0.211312 | 0.211312 | 0.044776 | 0.147683 | 0.080911 | 0.149254 | 0.062058 | 11 | 3.71 | -5.23 | 0.00 |
2014-09-12 | 300161.SZ | 2014-09-12 | 14.82 | 14.82 | 0.100540 | 0.008772 | 0.100540 | 0.000000 | 0.089744 | 0.102564 | 0.176113 | 0.089069 | 0.057355 | 0.075574 | 0.075574 | 0.033738 | 60 | 14.15 | -5.76 | 3.86 |
2016-11-01 | 300044.SZ | 2016-11-01 | 9.55 | 9.55 | 0.100524 | 0.021990 | 0.100524 | 0.008377 | 0.067016 | 0.158115 | 0.211518 | 0.056545 | 0.086911 | 0.071204 | 0.106806 | 0.053403 | 1 | 0.69 | -2.19 | 5.31 |
2018-05-21 | 002828.SZ | 2018-05-21 | 17.92 | 17.92 | 0.100446 | 0.046875 | 0.100446 | 0.019531 | 0.210937 | 0.210937 | 0.210937 | 0.155692 | NaN | NaN | NaN | NaN | 1 | 1.57 | -1.83 | 3.54 |
2015-08-26 | 000628.SZ | 2015-08-26 | 11.45 | 11.45 | 0.100437 | 0.082969 | 0.100437 | 0.061135 | 0.210480 | 0.210480 | 0.210480 | 0.210480 | 0.089083 | 0.222707 | 0.222707 | 0.089083 | 1 | 1.48 | -2.11 | 4.34 |
2014-09-19 | 000852.SZ | 2014-09-19 | 16.13 | 16.13 | 0.100434 | 0.003100 | 0.100434 | 0.000620 | 0.115933 | 0.075635 | 0.141971 | 0.058896 | 0.115313 | 0.112213 | 0.135152 | 0.088655 | 6 | 4.43 | -5.58 | 0.00 |
2015-10-27 | 600207.SH | 2015-10-27 | 9.56 | 9.56 | 0.100418 | 0.047071 | 0.100418 | 0.035565 | 0.210251 | 0.210251 | 0.210251 | 0.155858 | 0.331590 | 0.315900 | 0.331590 | 0.284519 | 95 | 4.91 | -5.48 | 0.00 |
2017-08-29 | 603042.SH | 2017-08-29 | 33.56 | 33.56 | 0.100417 | -0.021454 | 0.100417 | -0.027414 | 0.076281 | 0.031585 | 0.103397 | 0.008641 | 0.030691 | 0.056317 | 0.093564 | 0.027712 | 3 | 2.98 | -2.43 | 3.87 |
2015-02-04 | 000875.SZ | 2015-02-04 | 5.28 | 5.28 | 0.100379 | 0.041667 | 0.100379 | 0.009470 | 0.090909 | 0.115530 | 0.181818 | 0.062500 | 0.009470 | 0.045455 | 0.077652 | -0.017045 | 1 | 0.73 | -1.55 | 5.67 |
2017-03-13 | 601212.SH | 2017-03-13 | 10.66 | 10.66 | 0.100375 | -0.016886 | 0.100375 | -0.031895 | 0.211069 | 0.158537 | 0.211069 | 0.137899 | 0.332083 | 0.280488 | 0.332083 | 0.267355 | 211 | 20.19 | -12.07 | 0.00 |
2015-12-02 | 000668.SZ | 2015-12-02 | 26.61 | 26.61 | 0.100338 | 0.050733 | 0.100338 | 0.033070 | 0.066892 | 0.104848 | 0.162345 | 0.062383 | 0.071778 | 0.069523 | 0.086809 | 0.044344 | 1 | 1.64 | -2.07 | 12.18 |
2014-02-28 | 600680.SH | 2014-02-28 | 13.26 | 13.26 | 0.100302 | 0.045249 | 0.100302 | 0.045249 | 0.210407 | 0.118401 | 0.210407 | 0.105581 | 0.331825 | 0.272247 | 0.331825 | 0.272247 | 6 | 1.92 | -5.09 | 0.00 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2018-11-27 | 000948.SZ | 2018-11-27 | 11.50 | 10.80 | -0.114783 | -0.052174 | -0.040870 | -0.133043 | -0.160870 | -0.119130 | -0.113913 | -0.161739 | -0.149565 | -0.160870 | -0.140870 | -0.177391 | 2 | 1.35 | -0.82 | 5.63 |
2016-03-08 | 600882.SH | 2016-03-08 | 9.94 | 9.57 | -0.115694 | -0.132797 | -0.099598 | -0.133803 | -0.170020 | -0.112676 | -0.105634 | -0.173038 | -0.195171 | -0.193159 | -0.175050 | -0.205231 | 1 | 0.26 | -1.28 | 0.00 |
2017-10-13 | 300062.SZ | 2017-10-13 | 11.30 | 10.72 | -0.116814 | -0.070796 | -0.070796 | -0.132743 | -0.122124 | -0.123894 | -0.112389 | -0.127434 | -0.132743 | -0.123894 | -0.107080 | -0.136283 | 2 | 5.88 | -2.72 | 11.84 |
2015-02-03 | 000586.SZ | 2015-02-03 | 12.36 | 11.65 | -0.117314 | -0.134304 | -0.073625 | -0.140777 | -0.149676 | -0.114078 | -0.107605 | -0.149676 | -0.064725 | -0.150485 | -0.064725 | -0.156958 | 3 | 1.06 | -4.61 | 1.83 |
2018-12-27 | 300265.SZ | 2018-12-27 | 9.12 | 8.87 | -0.118421 | -0.088816 | -0.029605 | -0.125000 | -0.072368 | -0.130482 | -0.033991 | -0.150219 | 0.020833 | -0.088816 | 0.020833 | -0.092105 | 11 | 1.55 | -2.54 | 3.17 |
2017-03-30 | 002040.SZ | 2017-03-30 | 27.13 | 26.46 | -0.122374 | -0.077774 | -0.066716 | -0.122374 | -0.159602 | -0.172503 | -0.140066 | -0.196093 | -0.136380 | -0.163656 | -0.092886 | -0.164394 | 6 | 1.15 | -2.67 | 0.20 |
2015-05-14 | 002625.SZ | 2015-05-14 | 56.28 | 51.36 | -0.123490 | -0.123490 | -0.060768 | -0.171109 | -0.044954 | -0.139481 | -0.038913 | -0.163113 | -0.101812 | -0.038913 | -0.038735 | -0.124378 | 1 | 1.40 | -1.16 | 0.50 |
2015-10-23 | 300081.SZ | 2015-10-23 | 16.35 | 15.89 | -0.125994 | -0.078287 | -0.056881 | -0.125994 | -0.099694 | -0.173089 | -0.083792 | -0.176758 | -0.185321 | -0.124771 | -0.116820 | -0.188991 | 1 | 1.08 | -1.43 | 2.39 |
2018-06-15 | 002423.SZ | 2018-06-15 | 14.62 | 14.08 | -0.133379 | -0.110807 | -0.110807 | -0.133379 | -0.112859 | -0.220246 | -0.056772 | -0.220246 | -0.178523 | -0.158687 | -0.083447 | -0.189466 | 27 | 0.57 | -3.31 | 0.00 |
2015-07-27 | 600728.SH | 2015-07-27 | 13.96 | 13.35 | -0.135387 | -0.131805 | -0.016476 | -0.139685 | -0.049427 | -0.105301 | -0.048711 | -0.174069 | -0.114613 | -0.065186 | -0.037966 | -0.123209 | 9 | 2.36 | -4.15 | 2.79 |
2018-07-27 | 600186.SH | 2018-07-27 | 2.49 | 2.34 | -0.136546 | -0.092369 | -0.048193 | -0.152610 | -0.148594 | -0.128514 | -0.116466 | -0.156627 | -0.136546 | -0.144578 | -0.116466 | -0.156627 | 7 | 0.71 | -1.74 | 1.60 |
2018-07-03 | 002211.SZ | 2018-07-03 | 7.40 | 7.02 | -0.141892 | -0.091892 | -0.064865 | -0.145946 | -0.201351 | -0.156757 | -0.133784 | -0.221622 | -0.229730 | -0.216216 | -0.204054 | -0.258108 | 6 | 3.54 | -6.14 | 0.64 |
2017-04-14 | 000616.SZ | 2017-04-14 | 6.12 | 5.78 | -0.145425 | -0.101307 | -0.084967 | -0.150327 | -0.145425 | -0.153595 | -0.111111 | -0.156863 | -0.156863 | -0.156863 | -0.140523 | -0.181373 | 2 | 1.33 | -3.46 | 0.57 |
2015-04-27 | 300188.SZ | 2015-04-27 | 17.96 | 16.97 | -0.150334 | -0.084076 | -0.055122 | -0.150334 | NaN | NaN | NaN | NaN | -0.149220 | -0.116927 | -0.097439 | -0.149777 | 1 | 0.94 | -0.21 | 0.56 |
2018-12-06 | 300006.SZ | 2018-12-06 | 4.92 | 4.42 | -0.154472 | -0.097561 | -0.085366 | -0.168699 | -0.203252 | -0.172764 | -0.166667 | -0.203252 | -0.199187 | -0.201220 | -0.191057 | -0.203252 | 1 | 3.01 | -1.63 | 3.94 |
2015-10-30 | 000019.SZ | 2015-10-30 | 9.76 | 9.16 | -0.154713 | -0.154713 | -0.081967 | -0.154713 | -0.211066 | -0.172131 | -0.143443 | -0.222336 | -0.163934 | -0.205943 | -0.148566 | -0.214139 | 1 | 1.47 | -1.62 | 1.12 |
2018-11-29 | 600936.SH | 2018-11-29 | 5.10 | 4.77 | -0.154902 | -0.109804 | -0.107843 | -0.158824 | -0.117647 | -0.158824 | -0.090196 | -0.162745 | -0.133333 | -0.133333 | -0.129412 | -0.150980 | 1 | 1.78 | -2.43 | 7.48 |
2018-04-11 | 300705.SZ | 2018-04-11 | 28.85 | 26.79 | -0.164298 | -0.071404 | -0.049567 | -0.164298 | -0.224263 | -0.198614 | -0.164298 | -0.235355 | -0.236742 | -0.250260 | -0.228076 | -0.253380 | 175 | 3.81 | -4.69 | 0.48 |
2018-10-26 | 603999.SH | 2018-10-26 | 5.75 | 5.25 | -0.177391 | -0.142609 | -0.142609 | -0.177391 | -0.160000 | -0.184348 | -0.137391 | -0.205217 | -0.161739 | -0.172174 | -0.149565 | -0.180870 | 1 | 2.47 | -4.14 | 0.78 |
2014-12-22 | 600169.SH | 2014-12-22 | 8.81 | 7.95 | -0.181612 | -0.113507 | -0.091941 | -0.187287 | -0.205448 | -0.205448 | -0.185017 | -0.225880 | -0.125993 | -0.187287 | -0.125993 | -0.197503 | 15 | 1.20 | -1.48 | 4.80 |
2018-10-25 | 002451.SZ | 2018-10-25 | 8.51 | 7.62 | -0.183314 | -0.177438 | -0.121034 | -0.193890 | -0.212691 | -0.195065 | -0.182139 | -0.229142 | -0.203290 | -0.222092 | -0.171563 | -0.236193 | 1 | 1.27 | -3.88 | 1.30 |
2019-01-28 | 300096.SZ | 2019-01-28 | 14.72 | 12.26 | -0.250679 | -0.171196 | -0.151495 | -0.250679 | -0.310462 | -0.275815 | -0.247962 | -0.323370 | -0.338995 | -0.307745 | -0.303668 | -0.357337 | 2 | 3.23 | -2.62 | 2.11 |
2016-02-17 | 600234.SH | 2016-02-17 | 22.85 | 22.22 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1 | 0.47 | -0.70 | 0.47 |
2017-04-11 | 002774.SZ | 2017-04-11 | 22.72 | 22.72 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | -0.100352 | -0.078785 | -0.034771 | -0.100352 | 2 | 2.42 | -2.32 | 0.00 |
2014-02-12 | 000971.SZ | 2014-02-12 | 3.64 | 3.64 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | -0.027473 | -0.098901 | -0.002747 | -0.098901 | 91 | 10.91 | -9.18 | 0.70 |
2015-03-24 | 300310.SZ | 2015-03-24 | 9.98 | 9.98 | NaN | NaN | NaN | NaN | -0.071142 | -0.046092 | -0.039078 | -0.100200 | -0.044088 | -0.090180 | -0.002004 | -0.097194 | 1 | 0.91 | -0.81 | 9.70 |
2018-01-10 | 600652.SH | 2018-01-10 | 8.94 | 8.94 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | -0.083893 | -0.051454 | -0.020134 | -0.090604 | 1 | 0.81 | -0.30 | 2.03 |
2016-03-03 | 000982.SZ | 2016-03-03 | 8.22 | 8.22 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1 | 1.69 | -0.43 | 0.91 |
2017-04-12 | 000605.SZ | 2017-04-12 | 25.75 | 25.75 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | -0.100194 | -0.058252 | -0.016699 | -0.100194 | 2 | 2.42 | -4.24 | 1.20 |
2018-05-14 | 002930.SZ | 2018-05-14 | 41.53 | 41.53 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.099928 | 0.059475 | 0.099928 | 0.037804 | 5 | 2.10 | -3.77 | 0.00 |
508 rows × 20 columns
xdf = dataclosedf.dropna(axis=0)
xdf = xdf.sort_values(by='date')
xlabel = ['time','Change','drop range','limit Change']
ylabel = '3日收盘价'
xdf[ylabel] =xdf[ylabel].apply(lambda x:1 if x>0.02 else -1)
train = xdf[:300]
test = xdf[-200:]
X=train[xlabel]
Y=train[ylabel]
X_test=test[xlabel]
Y_test=test[ylabel]
from sklearn import svm
model = svm.SVC(C=5, kernel='rbf', gamma=0.5)
model.fit(X, Y)
print('训练时,预测成功率 {}'.format(round(np.mean(model.predict(X)==Y),2)))
print('测试时,预测成功率 {}'.format(round(np.mean(model.predict(X_test)==Y_test),2)))
len(list(test[test[ylabel]==1].index)),len(list(test[test[ylabel]==-1].index))
训练时,预测成功率 0.91 测试时,预测成功率 0.66
(52, 148)