涨停效应研究

In [7]:
#开始时间
startdate = '20140101'
#结束时间
enddate = '20190227'
#全市场股票获取
stock = list(get_all_securities('stock',enddate).index)
#数据获取
data = get_price(stock,startdate,enddate,'1d',['close','low','open','high'],True,'pre',is_panel=1)
close = data['close']
low = data['low']
opens = data['open']
In [9]:
#最低价非涨停价
limit_down = close-low
limit_down = limit_down[limit_down!=0]

#开盘价为涨停价
limit_open = round(close.shift()*1.1,2)-opens
limit_open = limit_open[limit_open==0]

#开板
df = limit_open+limit_down
df = df.T

non_limit = {}
num = 0
for s in list(df.columns):
    day = s.strftime('%Y-%m-%d')
    dt = df[s]
    dt = list(dt[dt>0].index)
    if len(dt)>0:
        num +=len(dt)
        non_limit[day]=dt
    else:
        pass
non_limit
print('开板数:{}'.format(num))

limitdt = {}
num = 0
tradeday = list(get_trade_days(startdate, '20200202', count=None).strftime('%Y-%m-%d'))
for d in tradeday:
    print(tradeday.index(d),len(tradeday))
    if d in list(non_limit.keys()):
        day = tradeday[tradeday.index(d)+1]
        stockdata = get_price(non_limit[d],None,day,'1m',['open','high','close','low'],True,'pre',bar_count=241,is_panel=1)
        pc = stockdata['close'].iloc[0]
        highlimit = round(pc*1.1,2)
        
        c = stockdata['close'].iloc[-240:]
        h = stockdata['high'].iloc[-240:]
        l = stockdata['low'].iloc[-240:]
        
        for t in list(range(1,240)):
            p1 = h.iloc[t]-highlimit
            p1 = list(p1[p1==0].index)
            p2 = c.iloc[t-1]-highlimit
            p2 = list(p2[p2<0].index)
            
            stock = list((set(p1)&set(p2)))
            if d in list(limitdt.keys()):
                limitdt[d] = list(set(limitdt[d]+stock))
            else:
                limitdt[d] = list(stock)        
limitdt
开板数:1958
0 1480
1 1480
2 1480
3 1480
4 1480
5 1480
6 1480
7 1480
8 1480
9 1480
10 1480
11 1480
12 1480
13 1480
14 1480
15 1480
16 1480
17 1480
18 1480
19 1480
20 1480
21 1480
22 1480
23 1480
24 1480
25 1480
26 1480
27 1480
28 1480
29 1480
30 1480
31 1480
32 1480
33 1480
34 1480
35 1480
36 1480
37 1480
38 1480
39 1480
40 1480
41 1480
42 1480
43 1480
44 1480
45 1480
46 1480
47 1480
48 1480
49 1480
50 1480
51 1480
52 1480
53 1480
54 1480
55 1480
56 1480
57 1480
58 1480
59 1480
60 1480
61 1480
62 1480
63 1480
64 1480
65 1480
66 1480
67 1480
68 1480
69 1480
70 1480
71 1480
72 1480
73 1480
74 1480
75 1480
76 1480
77 1480
78 1480
79 1480
80 1480
81 1480
82 1480
83 1480
84 1480
85 1480
86 1480
87 1480
88 1480
89 1480
90 1480
91 1480
92 1480
93 1480
94 1480
95 1480
96 1480
97 1480
98 1480
99 1480
100 1480
101 1480
102 1480
103 1480
104 1480
105 1480
106 1480
107 1480
108 1480
109 1480
110 1480
111 1480
112 1480
113 1480
114 1480
115 1480
116 1480
117 1480
118 1480
119 1480
120 1480
121 1480
122 1480
123 1480
124 1480
125 1480
126 1480
127 1480
128 1480
129 1480
130 1480
131 1480
132 1480
133 1480
134 1480
135 1480
136 1480
137 1480
138 1480
139 1480
140 1480
141 1480
142 1480
143 1480
144 1480
145 1480
146 1480
147 1480
148 1480
149 1480
150 1480
151 1480
152 1480
153 1480
154 1480
155 1480
156 1480
157 1480
158 1480
159 1480
160 1480
161 1480
162 1480
163 1480
164 1480
165 1480
166 1480
167 1480
168 1480
169 1480
170 1480
171 1480
172 1480
173 1480
174 1480
175 1480
176 1480
177 1480
178 1480
179 1480
180 1480
181 1480
182 1480
183 1480
184 1480
185 1480
186 1480
187 1480
188 1480
189 1480
190 1480
191 1480
192 1480
193 1480
194 1480
195 1480
196 1480
197 1480
198 1480
199 1480
200 1480
201 1480
202 1480
203 1480
204 1480
205 1480
206 1480
207 1480
208 1480
209 1480
210 1480
211 1480
212 1480
213 1480
214 1480
215 1480
216 1480
217 1480
218 1480
219 1480
220 1480
221 1480
222 1480
223 1480
224 1480
225 1480
226 1480
227 1480
228 1480
229 1480
230 1480
231 1480
232 1480
233 1480
234 1480
235 1480
236 1480
237 1480
238 1480
239 1480
240 1480
241 1480
242 1480
243 1480
244 1480
245 1480
246 1480
247 1480
248 1480
249 1480
250 1480
251 1480
252 1480
253 1480
254 1480
255 1480
256 1480
257 1480
258 1480
259 1480
260 1480
261 1480
262 1480
263 1480
264 1480
265 1480
266 1480
267 1480
268 1480
269 1480
270 1480
271 1480
272 1480
273 1480
274 1480
275 1480
276 1480
277 1480
278 1480
279 1480
280 1480
281 1480
282 1480
283 1480
284 1480
285 1480
286 1480
287 1480
288 1480
289 1480
290 1480
291 1480
292 1480
293 1480
294 1480
295 1480
296 1480
297 1480
298 1480
299 1480
300 1480
301 1480
302 1480
303 1480
304 1480
305 1480
306 1480
307 1480
308 1480
309 1480
310 1480
311 1480
312 1480
313 1480
314 1480
315 1480
316 1480
317 1480
318 1480
319 1480
320 1480
321 1480
322 1480
323 1480
324 1480
325 1480
326 1480
327 1480
328 1480
329 1480
330 1480
331 1480
332 1480
333 1480
334 1480
335 1480
336 1480
337 1480
338 1480
339 1480
340 1480
341 1480
342 1480
343 1480
344 1480
345 1480
346 1480
347 1480
348 1480
349 1480
350 1480
351 1480
352 1480
353 1480
354 1480
355 1480
356 1480
357 1480
358 1480
359 1480
360 1480
361 1480
362 1480
363 1480
364 1480
365 1480
366 1480
367 1480
368 1480
369 1480
370 1480
371 1480
372 1480
373 1480
374 1480
375 1480
376 1480
377 1480
378 1480
379 1480
380 1480
381 1480
382 1480
383 1480
384 1480
385 1480
386 1480
387 1480
388 1480
389 1480
390 1480
391 1480
392 1480
393 1480
394 1480
395 1480
396 1480
397 1480
398 1480
399 1480
400 1480
401 1480
402 1480
403 1480
404 1480
405 1480
406 1480
407 1480
408 1480
409 1480
410 1480
411 1480
412 1480
413 1480
414 1480
415 1480
416 1480
417 1480
418 1480
419 1480
420 1480
421 1480
422 1480
423 1480
424 1480
425 1480
426 1480
427 1480
428 1480
429 1480
430 1480
431 1480
432 1480
433 1480
434 1480
435 1480
436 1480
437 1480
438 1480
439 1480
440 1480
441 1480
442 1480
443 1480
444 1480
445 1480
446 1480
447 1480
448 1480
449 1480
450 1480
451 1480
452 1480
453 1480
454 1480
455 1480
456 1480
457 1480
458 1480
459 1480
460 1480
461 1480
462 1480
463 1480
464 1480
465 1480
466 1480
467 1480
468 1480
469 1480
470 1480
471 1480
472 1480
473 1480
474 1480
475 1480
476 1480
477 1480
478 1480
479 1480
480 1480
481 1480
482 1480
483 1480
484 1480
485 1480
486 1480
487 1480
488 1480
489 1480
490 1480
491 1480
492 1480
493 1480
494 1480
495 1480
496 1480
497 1480
498 1480
499 1480
500 1480
501 1480
502 1480
503 1480
504 1480
505 1480
506 1480
507 1480
508 1480
509 1480
510 1480
511 1480
512 1480
513 1480
514 1480
515 1480
516 1480
517 1480
518 1480
519 1480
520 1480
521 1480
522 1480
523 1480
524 1480
525 1480
526 1480
527 1480
528 1480
529 1480
530 1480
531 1480
532 1480
533 1480
534 1480
535 1480
536 1480
537 1480
538 1480
539 1480
540 1480
541 1480
542 1480
543 1480
544 1480
545 1480
546 1480
547 1480
548 1480
549 1480
550 1480
551 1480
552 1480
553 1480
554 1480
555 1480
556 1480
557 1480
558 1480
559 1480
560 1480
561 1480
562 1480
563 1480
564 1480
565 1480
566 1480
567 1480
568 1480
569 1480
570 1480
571 1480
572 1480
573 1480
574 1480
575 1480
576 1480
577 1480
578 1480
579 1480
580 1480
581 1480
582 1480
583 1480
584 1480
585 1480
586 1480
587 1480
588 1480
589 1480
590 1480
591 1480
592 1480
593 1480
594 1480
595 1480
596 1480
597 1480
598 1480
599 1480
600 1480
601 1480
602 1480
603 1480
604 1480
605 1480
606 1480
607 1480
608 1480
609 1480
610 1480
611 1480
612 1480
613 1480
614 1480
615 1480
616 1480
617 1480
618 1480
619 1480
620 1480
621 1480
622 1480
623 1480
624 1480
625 1480
626 1480
627 1480
628 1480
629 1480
630 1480
631 1480
632 1480
633 1480
634 1480
635 1480
636 1480
637 1480
638 1480
639 1480
640 1480
641 1480
642 1480
643 1480
644 1480
645 1480
646 1480
647 1480
648 1480
649 1480
650 1480
651 1480
652 1480
653 1480
654 1480
655 1480
656 1480
657 1480
658 1480
659 1480
660 1480
661 1480
662 1480
663 1480
664 1480
665 1480
666 1480
667 1480
668 1480
669 1480
670 1480
671 1480
672 1480
673 1480
674 1480
675 1480
676 1480
677 1480
678 1480
679 1480
680 1480
681 1480
682 1480
683 1480
684 1480
685 1480
686 1480
687 1480
688 1480
689 1480
690 1480
691 1480
692 1480
693 1480
694 1480
695 1480
696 1480
697 1480
698 1480
699 1480
700 1480
701 1480
702 1480
703 1480
704 1480
705 1480
706 1480
707 1480
708 1480
709 1480
710 1480
711 1480
712 1480
713 1480
714 1480
715 1480
716 1480
717 1480
718 1480
719 1480
720 1480
721 1480
722 1480
723 1480
724 1480
725 1480
726 1480
727 1480
728 1480
729 1480
730 1480
731 1480
732 1480
733 1480
734 1480
735 1480
736 1480
737 1480
738 1480
739 1480
740 1480
741 1480
742 1480
743 1480
744 1480
745 1480
746 1480
747 1480
748 1480
749 1480
750 1480
751 1480
752 1480
753 1480
754 1480
755 1480
756 1480
757 1480
758 1480
759 1480
760 1480
761 1480
762 1480
763 1480
764 1480
765 1480
766 1480
767 1480
768 1480
769 1480
770 1480
771 1480
772 1480
773 1480
774 1480
775 1480
776 1480
777 1480
778 1480
779 1480
780 1480
781 1480
782 1480
783 1480
784 1480
785 1480
786 1480
787 1480
788 1480
789 1480
790 1480
791 1480
792 1480
793 1480
794 1480
795 1480
796 1480
797 1480
798 1480
799 1480
800 1480
801 1480
802 1480
803 1480
804 1480
805 1480
806 1480
807 1480
808 1480
809 1480
810 1480
811 1480
812 1480
813 1480
814 1480
815 1480
816 1480
817 1480
818 1480
819 1480
820 1480
821 1480
822 1480
823 1480
824 1480
825 1480
826 1480
827 1480
828 1480
829 1480
830 1480
831 1480
832 1480
833 1480
834 1480
835 1480
836 1480
837 1480
838 1480
839 1480
840 1480
841 1480
842 1480
843 1480
844 1480
845 1480
846 1480
847 1480
848 1480
849 1480
850 1480
851 1480
852 1480
853 1480
854 1480
855 1480
856 1480
857 1480
858 1480
859 1480
860 1480
861 1480
862 1480
863 1480
864 1480
865 1480
866 1480
867 1480
868 1480
869 1480
870 1480
871 1480
872 1480
873 1480
874 1480
875 1480
876 1480
877 1480
878 1480
879 1480
880 1480
881 1480
882 1480
883 1480
884 1480
885 1480
886 1480
887 1480
888 1480
889 1480
890 1480
891 1480
892 1480
893 1480
894 1480
895 1480
896 1480
897 1480
898 1480
899 1480
900 1480
901 1480
902 1480
903 1480
904 1480
905 1480
906 1480
907 1480
908 1480
909 1480
910 1480
911 1480
912 1480
913 1480
914 1480
915 1480
916 1480
917 1480
918 1480
919 1480
920 1480
921 1480
922 1480
923 1480
924 1480
925 1480
926 1480
927 1480
928 1480
929 1480
930 1480
931 1480
932 1480
933 1480
934 1480
935 1480
936 1480
937 1480
938 1480
939 1480
940 1480
941 1480
942 1480
943 1480
944 1480
945 1480
946 1480
947 1480
948 1480
949 1480
950 1480
951 1480
952 1480
953 1480
954 1480
955 1480
956 1480
957 1480
958 1480
959 1480
960 1480
961 1480
962 1480
963 1480
964 1480
965 1480
966 1480
967 1480
968 1480
969 1480
970 1480
971 1480
972 1480
973 1480
974 1480
975 1480
976 1480
977 1480
978 1480
979 1480
980 1480
981 1480
982 1480
983 1480
984 1480
985 1480
986 1480
987 1480
988 1480
989 1480
990 1480
991 1480
992 1480
993 1480
994 1480
995 1480
996 1480
997 1480
998 1480
999 1480
1000 1480
1001 1480
1002 1480
1003 1480
1004 1480
1005 1480
1006 1480
1007 1480
1008 1480
1009 1480
1010 1480
1011 1480
1012 1480
1013 1480
1014 1480
1015 1480
1016 1480
1017 1480
1018 1480
1019 1480
1020 1480
1021 1480
1022 1480
1023 1480
1024 1480
1025 1480
1026 1480
1027 1480
1028 1480
1029 1480
1030 1480
1031 1480
1032 1480
1033 1480
1034 1480
1035 1480
1036 1480
1037 1480
1038 1480
1039 1480
1040 1480
1041 1480
1042 1480
1043 1480
1044 1480
1045 1480
1046 1480
1047 1480
1048 1480
1049 1480
1050 1480
1051 1480
1052 1480
1053 1480
1054 1480
1055 1480
1056 1480
1057 1480
1058 1480
1059 1480
1060 1480
1061 1480
1062 1480
1063 1480
1064 1480
1065 1480
1066 1480
1067 1480
1068 1480
1069 1480
1070 1480
1071 1480
1072 1480
1073 1480
1074 1480
1075 1480
1076 1480
1077 1480
1078 1480
1079 1480
1080 1480
1081 1480
1082 1480
1083 1480
1084 1480
1085 1480
1086 1480
1087 1480
1088 1480
1089 1480
1090 1480
1091 1480
1092 1480
1093 1480
1094 1480
1095 1480
1096 1480
1097 1480
1098 1480
1099 1480
1100 1480
1101 1480
1102 1480
1103 1480
1104 1480
1105 1480
1106 1480
1107 1480
1108 1480
1109 1480
1110 1480
1111 1480
1112 1480
1113 1480
1114 1480
1115 1480
1116 1480
1117 1480
1118 1480
1119 1480
1120 1480
1121 1480
1122 1480
1123 1480
1124 1480
1125 1480
1126 1480
1127 1480
1128 1480
1129 1480
1130 1480
1131 1480
1132 1480
1133 1480
1134 1480
1135 1480
1136 1480
1137 1480
1138 1480
1139 1480
1140 1480
1141 1480
1142 1480
1143 1480
1144 1480
1145 1480
1146 1480
1147 1480
1148 1480
1149 1480
1150 1480
1151 1480
1152 1480
1153 1480
1154 1480
1155 1480
1156 1480
1157 1480
1158 1480
1159 1480
1160 1480
1161 1480
1162 1480
1163 1480
1164 1480
1165 1480
1166 1480
1167 1480
1168 1480
1169 1480
1170 1480
1171 1480
1172 1480
1173 1480
1174 1480
1175 1480
1176 1480
1177 1480
1178 1480
1179 1480
1180 1480
1181 1480
1182 1480
1183 1480
1184 1480
1185 1480
1186 1480
1187 1480
1188 1480
1189 1480
1190 1480
1191 1480
1192 1480
1193 1480
1194 1480
1195 1480
1196 1480
1197 1480
1198 1480
1199 1480
1200 1480
1201 1480
1202 1480
1203 1480
1204 1480
1205 1480
1206 1480
1207 1480
1208 1480
1209 1480
1210 1480
1211 1480
1212 1480
1213 1480
1214 1480
1215 1480
1216 1480
1217 1480
1218 1480
1219 1480
1220 1480
1221 1480
1222 1480
1223 1480
1224 1480
1225 1480
1226 1480
1227 1480
1228 1480
1229 1480
1230 1480
1231 1480
1232 1480
1233 1480
1234 1480
1235 1480
1236 1480
1237 1480
1238 1480
1239 1480
1240 1480
1241 1480
1242 1480
1243 1480
1244 1480
1245 1480
1246 1480
1247 1480
1248 1480
1249 1480
1250 1480
1251 1480
1252 1480
1253 1480
1254 1480
1255 1480
1256 1480
1257 1480
1258 1480
1259 1480
1260 1480
1261 1480
1262 1480
1263 1480
1264 1480
1265 1480
1266 1480
1267 1480
1268 1480
1269 1480
1270 1480
1271 1480
1272 1480
1273 1480
1274 1480
1275 1480
1276 1480
1277 1480
1278 1480
1279 1480
1280 1480
1281 1480
1282 1480
1283 1480
1284 1480
1285 1480
1286 1480
1287 1480
1288 1480
1289 1480
1290 1480
1291 1480
1292 1480
1293 1480
1294 1480
1295 1480
1296 1480
1297 1480
1298 1480
1299 1480
1300 1480
1301 1480
1302 1480
1303 1480
1304 1480
1305 1480
1306 1480
1307 1480
1308 1480
1309 1480
1310 1480
1311 1480
1312 1480
1313 1480
1314 1480
1315 1480
1316 1480
1317 1480
1318 1480
1319 1480
1320 1480
1321 1480
1322 1480
1323 1480
1324 1480
1325 1480
1326 1480
1327 1480
1328 1480
1329 1480
1330 1480
1331 1480
1332 1480
1333 1480
1334 1480
1335 1480
1336 1480
1337 1480
1338 1480
1339 1480
1340 1480
1341 1480
1342 1480
1343 1480
1344 1480
1345 1480
1346 1480
1347 1480
1348 1480
1349 1480
1350 1480
1351 1480
1352 1480
1353 1480
1354 1480
1355 1480
1356 1480
1357 1480
1358 1480
1359 1480
1360 1480
1361 1480
1362 1480
1363 1480
1364 1480
1365 1480
1366 1480
1367 1480
1368 1480
1369 1480
1370 1480
1371 1480
1372 1480
1373 1480
1374 1480
1375 1480
1376 1480
1377 1480
1378 1480
1379 1480
1380 1480
1381 1480
1382 1480
1383 1480
1384 1480
1385 1480
1386 1480
1387 1480
1388 1480
1389 1480
1390 1480
1391 1480
1392 1480
1393 1480
1394 1480
1395 1480
1396 1480
1397 1480
1398 1480
1399 1480
1400 1480
1401 1480
1402 1480
1403 1480
1404 1480
1405 1480
1406 1480
1407 1480
1408 1480
1409 1480
1410 1480
1411 1480
1412 1480
1413 1480
1414 1480
1415 1480
1416 1480
1417 1480
1418 1480
1419 1480
1420 1480
1421 1480
1422 1480
1423 1480
1424 1480
1425 1480
1426 1480
1427 1480
1428 1480
1429 1480
1430 1480
1431 1480
1432 1480
1433 1480
1434 1480
1435 1480
1436 1480
1437 1480
1438 1480
1439 1480
1440 1480
1441 1480
1442 1480
1443 1480
1444 1480
1445 1480
1446 1480
1447 1480
1448 1480
1449 1480
1450 1480
1451 1480
1452 1480
1453 1480
1454 1480
1455 1480
1456 1480
1457 1480
1458 1480
1459 1480
1460 1480
1461 1480
1462 1480
1463 1480
1464 1480
1465 1480
1466 1480
1467 1480
1468 1480
1469 1480
1470 1480
1471 1480
1472 1480
1473 1480
1474 1480
1475 1480
1476 1480
1477 1480
1478 1480
1479 1480
Out[9]:
{'2014-01-08': [],
 '2014-01-16': ['000767.SZ'],
 '2014-01-27': [],
 '2014-02-12': ['000971.SZ'],
 '2014-02-17': [],
 '2014-02-19': [],
 '2014-02-21': ['603003.SH', '000554.SZ'],
 '2014-02-28': ['300297.SZ', '600680.SH'],
 '2014-03-05': [],
 '2014-03-10': ['300116.SZ'],
 '2014-03-11': [],
 '2014-03-13': ['000923.SZ'],
 '2014-03-20': [],
 '2014-03-21': [],
 '2014-03-24': [],
 '2014-03-25': [],
 '2014-03-27': ['000687.SZ'],
 '2014-04-01': [],
 '2014-04-03': ['000918.SZ'],
 '2014-04-09': [],
 '2014-04-10': ['300278.SZ'],
 '2014-04-17': [],
 '2014-04-22': [],
 '2014-04-30': ['601001.SH'],
 '2014-05-13': [],
 '2014-05-14': [],
 '2014-05-21': ['002660.SZ'],
 '2014-05-28': [],
 '2014-06-04': ['600601.SH'],
 '2014-06-05': ['600074.SH'],
 '2014-06-06': ['002535.SZ'],
 '2014-06-11': [],
 '2014-06-16': ['300198.SZ'],
 '2014-06-30': ['002093.SZ'],
 '2014-07-02': ['300288.SZ'],
 '2014-07-04': ['002070.SZ'],
 '2014-07-07': ['600568.SH'],
 '2014-07-11': ['300166.SZ', '002629.SZ'],
 '2014-07-16': ['000868.SZ'],
 '2014-07-17': [],
 '2014-07-23': [],
 '2014-07-24': [],
 '2014-07-25': ['600319.SH'],
 '2014-07-28': ['600157.SH'],
 '2014-08-04': [],
 '2014-08-06': [],
 '2014-08-07': ['600556.SH'],
 '2014-08-08': [],
 '2014-08-11': ['600222.SH'],
 '2014-08-12': [],
 '2014-08-14': ['002535.SZ', '300208.SZ'],
 '2014-08-15': [],
 '2014-08-18': ['002125.SZ'],
 '2014-08-19': [],
 '2014-08-21': ['000922.SZ'],
 '2014-08-22': ['600825.SH', '300356.SZ'],
 '2014-09-02': ['600691.SH'],
 '2014-09-05': ['002564.SZ'],
 '2014-09-10': [],
 '2014-09-12': ['300161.SZ'],
 '2014-09-16': [],
 '2014-09-19': ['000852.SZ'],
 '2014-09-30': ['600962.SH', '002523.SZ'],
 '2014-10-10': ['300133.SZ'],
 '2014-10-13': ['000815.SZ'],
 '2014-10-15': [],
 '2014-10-17': ['000820.SZ', '600692.SH'],
 '2014-10-20': ['000018.SZ'],
 '2014-10-22': [],
 '2014-10-23': [],
 '2014-10-27': [],
 '2014-10-31': ['601008.SH'],
 '2014-11-05': ['300297.SZ'],
 '2014-11-25': ['000918.SZ'],
 '2014-11-26': ['000410.SZ'],
 '2014-12-05': ['600792.SH'],
 '2014-12-08': ['600794.SH', '000835.SZ'],
 '2014-12-09': ['600678.SH'],
 '2014-12-10': [],
 '2014-12-12': ['300013.SZ'],
 '2014-12-16': ['002392.SZ'],
 '2014-12-17': ['300256.SZ', '000885.SZ'],
 '2014-12-18': ['300010.SZ'],
 '2014-12-19': ['600569.SH'],
 '2014-12-22': ['601866.SH', '601600.SH', '600169.SH'],
 '2014-12-24': ['002239.SZ'],
 '2014-12-26': ['000680.SZ'],
 '2014-12-29': ['002337.SZ', '600227.SH'],
 '2014-12-31': ['300268.SZ'],
 '2015-01-06': ['601918.SH'],
 '2015-01-08': [],
 '2015-01-09': [],
 '2015-01-12': ['002738.SZ'],
 '2015-01-13': [],
 '2015-01-14': ['000498.SZ'],
 '2015-01-21': ['300411.SZ'],
 '2015-01-23': ['300268.SZ', '600156.SH'],
 '2015-01-27': [],
 '2015-01-30': ['002740.SZ'],
 '2015-02-03': ['000586.SZ'],
 '2015-02-04': ['000875.SZ'],
 '2015-02-05': [],
 '2015-02-16': [],
 '2015-02-26': [],
 '2015-02-27': [],
 '2015-03-02': ['300228.SZ'],
 '2015-03-04': ['300364.SZ'],
 '2015-03-05': ['300364.SZ', '600608.SH'],
 '2015-03-06': ['300102.SZ'],
 '2015-03-10': ['300097.SZ'],
 '2015-03-12': ['600112.SH'],
 '2015-03-16': ['600207.SH'],
 '2015-03-17': ['000720.SZ', '000752.SZ'],
 '2015-03-18': ['300111.SZ', '600115.SH'],
 '2015-03-19': ['300247.SZ', '300092.SZ'],
 '2015-03-20': ['002663.SZ', '600714.SH', '000401.SZ'],
 '2015-03-23': [],
 '2015-03-24': ['300310.SZ'],
 '2015-03-27': ['000020.SZ'],
 '2015-04-02': ['002006.SZ'],
 '2015-04-03': ['002750.SZ', '603030.SH'],
 '2015-04-07': ['000693.SZ', '300301.SZ', '600552.SH'],
 '2015-04-09': ['600126.SH'],
 '2015-04-10': ['600759.SH'],
 '2015-04-13': ['300053.SZ'],
 '2015-04-14': ['300023.SZ', '000590.SZ'],
 '2015-04-15': ['002018.SZ', '002239.SZ', '002044.SZ'],
 '2015-04-16': ['000663.SZ'],
 '2015-04-20': ['601106.SH', '300116.SZ'],
 '2015-04-21': ['601106.SH'],
 '2015-04-22': ['000410.SZ'],
 '2015-04-23': ['000611.SZ'],
 '2015-04-24': ['002129.SZ'],
 '2015-04-27': ['300188.SZ'],
 '2015-04-30': [],
 '2015-05-04': ['000633.SZ', '002261.SZ', '600744.SH', '000616.SZ'],
 '2015-05-05': ['600744.SH', '000638.SZ'],
 '2015-05-06': ['300276.SZ'],
 '2015-05-08': ['002691.SZ'],
 '2015-05-11': ['300166.SZ', '300367.SZ', '300226.SZ'],
 '2015-05-12': ['000971.SZ', '300166.SZ', '002442.SZ'],
 '2015-05-13': ['600836.SH', '300248.SZ'],
 '2015-05-14': ['300431.SZ', '002625.SZ'],
 '2015-05-15': [],
 '2015-05-19': ['002014.SZ', '300364.SZ'],
 '2015-05-20': ['000838.SZ', '000609.SZ'],
 '2015-05-21': ['002089.SZ', '600198.SH'],
 '2015-05-22': ['300051.SZ',
  '002131.SZ',
  '300111.SZ',
  '300299.SZ',
  '002494.SZ',
  '601919.SH'],
 '2015-05-25': ['002231.SZ'],
 '2015-05-26': ['600311.SH', '600130.SH'],
 '2015-05-27': ['300417.SZ'],
 '2015-05-28': ['002163.SZ'],
 '2015-05-29': ['000010.SZ', '600696.SH'],
 '2015-06-01': ['300404.SZ', '002362.SZ', '300149.SZ'],
 '2015-06-02': ['600696.SH'],
 '2015-06-03': ['600800.SH', '002660.SZ', '600854.SH', '000558.SZ'],
 '2015-06-04': ['600083.SH', '002329.SZ', '002617.SZ'],
 '2015-06-05': ['300312.SZ'],
 '2015-06-08': ['300074.SZ'],
 '2015-06-09': ['002755.SZ', '002442.SZ'],
 '2015-06-12': ['600843.SH', '600890.SH', '603227.SH', '300459.SZ'],
 '2015-06-15': [],
 '2015-06-16': ['002319.SZ', '600385.SH', '600151.SH'],
 '2015-06-18': ['002066.SZ', '000411.SZ', '002645.SZ'],
 '2015-06-19': ['002114.SZ'],
 '2015-06-24': ['300126.SZ'],
 '2015-06-25': ['002552.SZ'],
 '2015-06-26': ['300464.SZ', '603616.SH'],
 '2015-06-29': ['601968.SH', '002021.SZ'],
 '2015-07-01': ['300309.SZ'],
 '2015-07-02': ['002264.SZ'],
 '2015-07-06': ['000835.SZ',
  '002231.SZ',
  '601988.SH',
  '002234.SZ',
  '300282.SZ',
  '300102.SZ',
  '601969.SH',
  '300430.SZ',
  '300464.SZ',
  '600854.SH',
  '600844.SH',
  '002477.SZ',
  '000969.SZ',
  '002134.SZ'],
 '2015-07-10': ['002154.SZ',
  '002013.SZ',
  '600178.SH',
  '600229.SH',
  '000816.SZ',
  '300177.SZ',
  '300334.SZ',
  '000498.SZ',
  '300311.SZ',
  '603979.SH',
  '000678.SZ',
  '002446.SZ'],
 '2015-07-13': ['000931.SZ',
  '002168.SZ',
  '300034.SZ',
  '300129.SZ',
  '600017.SH',
  '600543.SH',
  '002265.SZ',
  '002165.SZ',
  '002297.SZ',
  '300256.SZ',
  '000633.SZ',
  '600831.SH',
  '000428.SZ',
  '000613.SZ',
  '300400.SZ',
  '300223.SZ',
  '300101.SZ',
  '600678.SH',
  '002046.SZ',
  '600220.SH',
  '300102.SZ',
  '002337.SZ',
  '002540.SZ',
  '601008.SH',
  '300241.SZ',
  '300437.SZ',
  '000032.SZ',
  '000663.SZ',
  '600088.SH',
  '300067.SZ',
  '002108.SZ',
  '002188.SZ',
  '600306.SH',
  '002044.SZ',
  '600248.SH',
  '600550.SH',
  '300283.SZ',
  '600206.SH',
  '300354.SZ',
  '000597.SZ',
  '603300.SH',
  '600221.SH',
  '600714.SH',
  '000830.SZ',
  '002163.SZ',
  '300246.SZ',
  '600275.SH',
  '002362.SZ',
  '300125.SZ',
  '600236.SH',
  '300315.SZ',
  '000065.SZ',
  '600389.SH',
  '600979.SH',
  '300270.SZ',
  '600423.SH',
  '002685.SZ'],
 '2015-07-14': ['300333.SZ',
  '600359.SH',
  '600257.SH',
  '600052.SH',
  '000498.SZ',
  '600759.SH',
  '000883.SZ',
  '002319.SZ',
  '600985.SH',
  '600121.SH',
  '002291.SZ',
  '300388.SZ',
  '000958.SZ',
  '002583.SZ',
  '603598.SH',
  '002467.SZ',
  '600084.SH',
  '600671.SH',
  '603012.SH',
  '600117.SH',
  '300173.SZ',
  '002227.SZ',
  '600495.SH',
  '000638.SZ',
  '300370.SZ',
  '600275.SH',
  '603222.SH',
  '600055.SH',
  '000969.SZ'],
 '2015-07-15': ['600421.SH',
  '000605.SZ',
  '000681.SZ',
  '000425.SZ',
  '002077.SZ',
  '002610.SZ',
  '603030.SH',
  '000798.SZ',
  '300025.SZ',
  '002513.SZ',
  '300217.SZ',
  '002172.SZ',
  '000925.SZ',
  '000831.SZ',
  '600749.SH',
  '300404.SZ',
  '002255.SZ',
  '002359.SZ',
  '000593.SZ',
  '000911.SZ',
  '002181.SZ',
  '000971.SZ',
  '002476.SZ',
  '600496.SH',
  '000710.SZ',
  '000918.SZ',
  '002087.SZ',
  '002644.SZ',
  '600727.SH',
  '002618.SZ',
  '600331.SH',
  '600701.SH',
  '002114.SZ',
  '600601.SH',
  '002162.SZ',
  '000837.SZ'],
 '2015-07-16': ['000048.SZ', '600695.SH'],
 '2015-07-17': ['002392.SZ', '002663.SZ', '002208.SZ', '000610.SZ'],
 '2015-07-20': ['300079.SZ', '002502.SZ', '002176.SZ'],
 '2015-07-21': ['300192.SZ',
  '002159.SZ',
  '300166.SZ',
  '002477.SZ',
  '000638.SZ'],
 '2015-07-22': ['002220.SZ'],
 '2015-07-23': ['300235.SZ'],
 '2015-07-24': ['300459.SZ', '002341.SZ'],
 '2015-07-27': ['000663.SZ', '300401.SZ', '600728.SH'],
 '2015-07-28': ['002535.SZ'],
 '2015-07-29': ['002342.SZ', '000586.SZ'],
 '2015-07-30': ['300368.SZ'],
 '2015-07-31': ['002526.SZ'],
 '2015-08-03': ['000518.SZ'],
 '2015-08-04': ['603616.SH'],
 '2015-08-05': ['002494.SZ', '300201.SZ'],
 '2015-08-06': ['002560.SZ', '300345.SZ'],
 '2015-08-07': ['002070.SZ'],
 '2015-08-10': ['600072.SH',
  '002162.SZ',
  '600112.SH',
  '300226.SZ',
  '600058.SH'],
 '2015-08-11': ['600685.SH',
  '000859.SZ',
  '300364.SZ',
  '002260.SZ',
  '002464.SZ'],
 '2015-08-12': ['600760.SH'],
 '2015-08-14': ['600421.SH', '600961.SH', '600126.SH'],
 '2015-08-17': ['600802.SH'],
 '2015-08-18': ['600724.SH', '000010.SZ', '600653.SH'],
 '2015-08-20': ['300067.SZ'],
 '2015-08-21': [],
 '2015-08-24': ['000425.SZ'],
 '2015-08-26': ['000628.SZ'],
 '2015-08-31': ['000766.SZ', '000585.SZ'],
 '2015-09-07': ['002159.SZ', '000502.SZ'],
 '2015-09-09': ['002077.SZ'],
 '2015-09-10': ['000005.SZ'],
 '2015-09-11': ['600172.SH'],
 '2015-09-14': ['600083.SH', '002066.SZ'],
 '2015-09-17': ['603616.SH', '300226.SZ', '002162.SZ'],
 '2015-09-18': ['300062.SZ'],
 '2015-09-21': [],
 '2015-09-22': [],
 '2015-09-25': ['600876.SH'],
 '2015-10-08': ['000911.SZ', '002506.SZ'],
 '2015-10-09': ['002246.SZ', '000426.SZ', '002684.SZ'],
 '2015-10-13': [],
 '2015-10-15': ['600579.SH'],
 '2015-10-16': ['000564.SZ'],
 '2015-10-19': ['300191.SZ', '002660.SZ', '600397.SH'],
 '2015-10-20': ['600689.SH', '002436.SZ'],
 '2015-10-21': ['002154.SZ', '002362.SZ', '002316.SZ'],
 '2015-10-23': ['002362.SZ', '002702.SZ', '300081.SZ'],
 '2015-10-26': ['300322.SZ',
  '002494.SZ',
  '000020.SZ',
  '300021.SZ',
  '600689.SH',
  '000019.SZ'],
 '2015-10-27': ['300076.SZ', '002432.SZ', '600207.SH'],
 '2015-10-28': ['002423.SZ'],
 '2015-10-29': ['600207.SH'],
 '2015-10-30': ['000020.SZ', '002570.SZ', '000760.SZ', '000019.SZ'],
 '2015-11-02': ['002149.SZ'],
 '2015-11-04': ['000567.SZ'],
 '2015-11-05': ['000526.SZ'],
 '2015-11-09': ['000886.SZ', '002723.SZ'],
 '2015-11-10': ['300080.SZ'],
 '2015-11-11': ['002392.SZ', '002668.SZ', '002161.SZ'],
 '2015-11-12': ['002189.SZ'],
 '2015-11-13': ['002387.SZ', '000760.SZ'],
 '2015-11-17': ['600238.SH'],
 '2015-11-20': [],
 '2015-11-23': ['600226.SH', '002708.SZ'],
 '2015-11-24': ['000633.SZ', '002259.SZ', '600186.SH', '002072.SZ'],
 '2015-11-25': [],
 '2015-11-26': ['001896.SZ'],
 '2015-11-27': ['600392.SH'],
 '2015-12-01': ['600165.SH'],
 '2015-12-02': ['600186.SH', '000668.SZ'],
 '2015-12-03': ['300288.SZ'],
 '2015-12-10': ['600666.SH', '002667.SZ'],
 '2015-12-14': [],
 '2015-12-15': ['002629.SZ'],
 '2015-12-18': ['600734.SH', '300265.SZ'],
 '2015-12-21': ['000514.SZ', '002642.SZ'],
 '2015-12-22': [],
 '2015-12-24': ['600306.SH'],
 '2015-12-25': [],
 '2015-12-28': ['002102.SZ'],
 '2015-12-29': [],
 '2015-12-31': ['002505.SZ', '000606.SZ'],
 '2016-01-06': ['600671.SH', '300148.SZ'],
 '2016-01-07': ['000025.SZ', '002423.SZ'],
 '2016-01-08': ['600448.SH'],
 '2016-01-11': ['600546.SH'],
 '2016-01-13': [],
 '2016-01-15': [],
 '2016-01-19': ['000048.SZ'],
 '2016-01-20': ['300466.SZ'],
 '2016-01-25': ['600207.SH'],
 '2016-01-28': [],
 '2016-02-01': ['600520.SH'],
 '2016-02-02': ['000525.SZ'],
 '2016-02-04': ['600724.SH', '600836.SH', '000505.SZ'],
 '2016-02-05': ['000693.SZ', '002114.SZ'],
 '2016-02-15': ['601899.SH'],
 '2016-02-17': ['600234.SH'],
 '2016-02-18': [],
 '2016-02-19': ['600319.SH'],
 '2016-02-23': ['000020.SZ', '600844.SH'],
 '2016-02-24': [],
 '2016-02-25': ['300280.SZ', '600963.SH'],
 '2016-02-26': [],
 '2016-02-29': ['000629.SZ'],
 '2016-03-03': ['000982.SZ'],
 '2016-03-04': ['000029.SZ'],
 '2016-03-07': [],
 '2016-03-08': ['600193.SH', '600882.SH'],
 '2016-03-14': [],
 '2016-03-16': [],
 '2016-03-21': ['000668.SZ'],
 '2016-03-22': [],
 '2016-03-25': ['300264.SZ', '600052.SH'],
 '2016-04-05': [],
 '2016-04-06': [],
 '2016-04-13': [],
 '2016-04-14': [],
 '2016-04-19': [],
 '2016-04-22': [],
 '2016-04-25': ['603028.SH'],
 '2016-04-27': ['600706.SH'],
 '2016-04-28': [],
 '2016-05-06': ['002070.SZ'],
 '2016-05-11': ['600127.SH'],
 '2016-05-12': ['000918.SZ'],
 '2016-05-16': ['000892.SZ'],
 '2016-05-17': ['600367.SH', '300081.SZ'],
 '2016-05-24': ['002535.SZ'],
 '2016-05-30': [],
 '2016-05-31': [],
 '2016-06-03': [],
 '2016-06-08': ['600069.SH'],
 '2016-06-17': [],
 '2016-06-20': ['300066.SZ'],
 '2016-06-21': ['600241.SH'],
 '2016-06-29': [],
 '2016-07-01': [],
 '2016-07-04': ['000567.SZ'],
 '2016-07-05': [],
 '2016-07-08': ['002313.SZ'],
 '2016-07-12': ['002113.SZ'],
 '2016-07-15': [],
 '2016-07-20': ['300391.SZ'],
 '2016-07-21': ['000571.SZ'],
 '2016-07-26': ['000835.SZ'],
 '2016-08-05': ['000918.SZ'],
 '2016-08-10': [],
 '2016-08-19': ['002516.SZ', '000885.SZ'],
 '2016-08-22': ['600187.SH'],
 '2016-08-30': [],
 '2016-08-31': [],
 '2016-09-01': [],
 '2016-09-07': ['600896.SH'],
 '2016-09-09': ['600126.SH'],
 '2016-09-13': [],
 '2016-09-14': ['300132.SZ'],
 '2016-09-22': [],
 '2016-09-26': ['600275.SH'],
 '2016-09-29': [],
 '2016-10-10': [],
 '2016-10-12': ['000567.SZ'],
 '2016-10-13': ['002630.SZ'],
 '2016-10-14': ['002122.SZ', '000567.SZ'],
 '2016-10-17': ['000960.SZ', '000959.SZ'],
 '2016-10-21': ['000553.SZ'],
 '2016-10-24': ['000043.SZ'],
 '2016-10-25': ['300240.SZ'],
 '2016-10-26': ['000980.SZ', '000912.SZ'],
 '2016-11-01': ['300044.SZ'],
 '2016-11-02': ['600275.SH'],
 '2016-11-03': ['600321.SH'],
 '2016-11-04': ['600288.SH', '300411.SZ'],
 '2016-11-07': [],
 '2016-11-09': [],
 '2016-11-10': ['002486.SZ'],
 '2016-11-11': ['000595.SZ', '603333.SH'],
 '2016-11-14': [],
 '2016-11-16': ['002564.SZ'],
 '2016-11-17': ['603716.SH'],
 '2016-11-21': ['300063.SZ'],
 '2016-11-23': [],
 '2016-12-12': [],
 '2016-12-14': ['600722.SH'],
 '2016-12-19': ['300268.SZ', '000017.SZ', '000939.SZ'],
 '2016-12-21': [],
 '2016-12-23': [],
 '2016-12-26': [],
 '2016-12-28': [],
 '2016-12-30': ['000993.SZ'],
 '2017-01-04': [],
 '2017-01-10': ['600178.SH'],
 '2017-01-13': ['600576.SH'],
 '2017-01-20': ['002207.SZ'],
 '2017-01-23': ['000885.SZ'],
 '2017-01-24': ['000605.SZ'],
 '2017-02-08': [],
 '2017-02-09': [],
 '2017-02-10': ['300596.SZ'],
 '2017-02-13': ['002307.SZ'],
 '2017-02-14': [],
 '2017-02-15': [],
 '2017-02-17': [],
 '2017-02-20': ['002323.SZ'],
 '2017-02-22': ['603066.SH'],
 '2017-02-23': [],
 '2017-03-06': ['300044.SZ'],
 '2017-03-07': ['600187.SH'],
 '2017-03-13': ['601212.SH'],
 '2017-03-14': [],
 '2017-03-15': ['002850.SZ'],
 '2017-03-16': ['600152.SH'],
 '2017-03-17': ['300534.SZ', '601212.SH'],
 '2017-03-21': [],
 '2017-03-23': ['000407.SZ'],
 '2017-03-24': [],
 '2017-03-28': ['000560.SZ'],
 '2017-03-30': ['002040.SZ'],
 '2017-03-31': [],
 '2017-04-05': ['002691.SZ',
  '002459.SZ',
  '600322.SH',
  '002494.SZ',
  '300107.SZ',
  '603778.SH',
  '300332.SZ',
  '600722.SH',
  '002310.SZ',
  '000638.SZ',
  '000965.SZ'],
 '2017-04-06': [],
 '2017-04-07': ['600155.SH', '600149.SH'],
 '2017-04-10': ['000822.SZ'],
 '2017-04-11': ['002774.SZ'],
 '2017-04-12': ['600550.SH', '000605.SZ'],
 '2017-04-13': ['000829.SZ'],
 '2017-04-14': ['002665.SZ', '000616.SZ'],
 '2017-04-17': [],
 '2017-04-28': ['300157.SZ'],
 '2017-05-02': ['300255.SZ', '000158.SZ'],
 '2017-05-04': [],
 '2017-05-05': [],
 '2017-05-12': ['600532.SH', '002633.SZ'],
 '2017-05-17': [],
 '2017-05-18': ['603728.SH'],
 '2017-05-22': [],
 '2017-05-31': [],
 '2017-06-05': [],
 '2017-06-06': ['002121.SZ'],
 '2017-06-07': [],
 '2017-06-08': ['603007.SH'],
 '2017-06-14': ['002835.SZ'],
 '2017-06-16': ['600652.SH'],
 '2017-06-19': ['002476.SZ'],
 '2017-06-22': [],
 '2017-06-23': [],
 '2017-06-29': [],
 '2017-07-03': [],
 '2017-07-10': [],
 '2017-07-17': [],
 '2017-07-24': [],
 '2017-07-25': [],
 '2017-07-27': ['600117.SH', '601919.SH'],
 '2017-07-28': ['000835.SZ'],
 '2017-08-02': ['002805.SZ'],
 '2017-08-04': ['000616.SZ'],
 '2017-08-07': ['600569.SH'],
 '2017-08-08': ['000923.SZ'],
 '2017-08-09': [],
 '2017-08-10': [],
 '2017-08-14': ['002600.SZ'],
 '2017-08-15': ['300386.SZ', '000018.SZ'],
 '2017-08-17': ['000751.SZ'],
 '2017-08-18': ['603602.SH', '601611.SH'],
 '2017-08-21': [],
 '2017-08-22': ['300678.SZ', '600050.SH'],
 '2017-08-28': ['300229.SZ', '601619.SH'],
 '2017-08-29': ['603042.SH'],
 '2017-09-01': ['002881.SZ', '300348.SZ'],
 '2017-09-05': ['600496.SH'],
 '2017-09-07': ['300198.SZ'],
 '2017-09-08': ['300313.SZ'],
 '2017-09-11': ['300692.SZ'],
 '2017-09-13': ['002604.SZ'],
 '2017-09-21': ['002156.SZ', '002639.SZ'],
 '2017-09-22': ['600444.SH'],
 '2017-09-25': [],
 '2017-09-27': ['300629.SZ'],
 '2017-09-29': ['002622.SZ', '600701.SH'],
 '2017-10-09': ['603106.SH'],
 '2017-10-10': [],
 '2017-10-11': ['300556.SZ'],
 '2017-10-12': [],
 '2017-10-13': ['300062.SZ'],
 '2017-10-17': [],
 '2017-10-19': [],
 '2017-10-23': ['600119.SH'],
 '2017-10-24': ['600763.SH', '300707.SZ', '002077.SZ'],
 '2017-11-03': ['600807.SH'],
 '2017-11-06': [],
 '2017-11-09': [],
 '2017-11-10': ['002409.SZ', '603729.SH'],
 '2017-11-22': ['002102.SZ'],
 '2017-11-23': [],
 '2017-11-24': [],
 '2017-11-30': ['300038.SZ'],
 '2017-12-04': ['600311.SH'],
 '2017-12-05': [],
 '2017-12-06': [],
 '2017-12-08': ['000420.SZ'],
 '2017-12-11': [],
 '2017-12-12': ['600520.SH'],
 '2017-12-22': [],
 '2017-12-25': [],
 '2017-12-29': [],
 '2018-01-04': ['300675.SZ'],
 '2018-01-05': ['002447.SZ'],
 '2018-01-10': ['600652.SH'],
 '2018-01-12': ['002369.SZ', '002610.SZ'],
 '2018-01-17': ['300698.SZ'],
 '2018-01-19': [],
 '2018-01-22': [],
 '2018-01-23': ['300226.SZ'],
 '2018-01-24': [],
 '2018-01-31': [],
 '2018-02-01': ['300677.SZ'],
 '2018-02-05': [],
 '2018-02-07': ['300230.SZ', '600053.SH'],
 '2018-02-12': [],
 '2018-02-13': [],
 '2018-02-23': ['600868.SH', '300621.SZ'],
 '2018-02-26': [],
 '2018-03-02': ['300353.SZ', '000410.SZ'],
 '2018-03-05': ['002769.SZ', '600207.SH', '002452.SZ'],
 '2018-03-06': ['600422.SH'],
 '2018-03-08': ['600175.SH'],
 '2018-03-09': ['000790.SZ'],
 '2018-03-12': [],
 '2018-03-13': ['002877.SZ'],
 '2018-03-14': [],
 '2018-03-16': ['002264.SZ'],
 '2018-03-19': ['300624.SZ'],
 '2018-03-20': ['002717.SZ'],
 '2018-03-21': ['603313.SH'],
 '2018-03-22': [],
 '2018-03-23': ['600800.SH',
  '600354.SH',
  '300682.SZ',
  '300175.SZ',
  '000713.SZ'],
 '2018-03-26': ['600095.SH'],
 '2018-03-27': [],
 '2018-03-29': ['300259.SZ', '300667.SZ'],
 '2018-03-30': [],
 '2018-04-02': ['300259.SZ', '002712.SZ'],
 '2018-04-04': ['000852.SZ', '600721.SH'],
 '2018-04-09': ['000955.SZ'],
 '2018-04-10': ['300589.SZ'],
 '2018-04-11': ['603637.SH', '300177.SZ', '300356.SZ', '300705.SZ'],
 '2018-04-13': ['300288.SZ'],
 '2018-04-16': ['601969.SH',
  '002159.SZ',
  '000571.SZ',
  '300189.SZ',
  '600238.SH'],
 '2018-04-17': ['000735.SZ', '002181.SZ'],
 '2018-04-18': ['603897.SH'],
 '2018-04-23': ['600853.SH'],
 '2018-04-24': [],
 '2018-04-26': ['002285.SZ', '300597.SZ', '002134.SZ'],
 '2018-04-27': ['600332.SH'],
 '2018-05-04': ['002889.SZ'],
 '2018-05-08': [],
 '2018-05-10': [],
 '2018-05-11': [],
 '2018-05-14': ['002930.SZ'],
 '2018-05-15': ['002931.SZ'],
 '2018-05-16': ['300063.SZ', '300175.SZ'],
 '2018-05-17': ['300578.SZ'],
 '2018-05-18': ['603536.SH'],
 '2018-05-21': ['300471.SZ', '002828.SZ'],
 '2018-05-22': [],
 '2018-05-25': ['603069.SH'],
 '2018-05-28': ['300556.SZ'],
 '2018-05-29': ['002758.SZ'],
 '2018-05-30': [],
 '2018-05-31': ['300454.SZ', '300268.SZ', '002903.SZ'],
 '2018-06-01': ['300740.SZ', '002889.SZ'],
 '2018-06-05': ['600309.SH'],
 '2018-06-06': [],
 '2018-06-07': ['600571.SH'],
 '2018-06-12': [],
 '2018-06-13': ['603398.SH'],
 '2018-06-14': ['002096.SZ', '000019.SZ'],
 '2018-06-15': ['300746.SZ', '002423.SZ'],
 '2018-06-19': [],
 '2018-06-20': ['600240.SH'],
 '2018-06-21': ['002333.SZ', '002909.SZ', '300283.SZ'],
 '2018-06-25': ['002108.SZ',
  '600657.SH',
  '000520.SZ',
  '603822.SH',
  '002684.SZ',
  '300312.SZ'],
 '2018-06-26': [],
 '2018-06-27': ['600385.SH', '600400.SH'],
 '2018-06-28': ['300693.SZ', '603826.SH', '002357.SZ'],
 '2018-07-02': ['603486.SH', '603901.SH', '300139.SZ', '000802.SZ'],
 '2018-07-03': ['601330.SH', '002374.SZ', '002211.SZ'],
 '2018-07-04': ['000802.SZ'],
 '2018-07-06': ['603895.SH'],
 '2018-07-09': ['600715.SH'],
 '2018-07-11': ['300458.SZ', '600481.SH', '603197.SH'],
 '2018-07-12': ['300747.SZ', '603602.SH', '300217.SZ'],
 '2018-07-13': ['002897.SZ'],
 '2018-07-16': ['002880.SZ', '002662.SZ'],
 '2018-07-17': [],
 '2018-07-18': ['300056.SZ'],
 '2018-07-19': ['002636.SZ'],
 '2018-07-20': ['002375.SZ'],
 '2018-07-24': ['002778.SZ', '600693.SH'],
 '2018-07-25': ['300032.SZ', '600812.SH', '300746.SZ'],
 '2018-07-26': ['300428.SZ', '000721.SZ', '000962.SZ'],
 '2018-07-27': ['000017.SZ',
  '300163.SZ',
  '600106.SH',
  '002021.SZ',
  '000955.SZ',
  '600255.SH',
  '600186.SH'],
 '2018-07-30': ['000509.SZ', '600225.SH'],
 '2018-07-31': ['603713.SH'],
 '2018-08-01': ['002401.SZ'],
 '2018-08-02': ['600853.SH', '002400.SZ', '600278.SH'],
 '2018-08-03': ['300240.SZ', '000633.SZ'],
 '2018-08-06': ['600281.SH'],
 '2018-08-07': ['300392.SZ'],
 '2018-08-08': ['600470.SH'],
 '2018-08-09': ['002315.SZ', '300392.SZ', '603657.SH'],
 '2018-08-10': ['600986.SH', '002691.SZ', '002523.SZ'],
 '2018-08-14': ['603557.SH', '002331.SZ'],
 '2018-08-15': ['600455.SH', '002193.SZ'],
 '2018-08-17': [],
 '2018-08-20': ['300724.SZ'],
 '2018-08-21': [],
 '2018-08-22': ['002721.SZ'],
 '2018-08-24': [],
 '2018-08-27': [],
 '2018-08-29': ['603050.SH'],
 '2018-09-03': ['002118.SZ'],
 '2018-09-04': [],
 '2018-09-05': ['300064.SZ'],
 '2018-09-06': ['002028.SZ', '002848.SZ'],
 '2018-09-07': ['002893.SZ', '300688.SZ'],
 '2018-09-10': ['002906.SZ', '002143.SZ', '002443.SZ', '600312.SH'],
 '2018-09-12': ['002259.SZ'],
 '2018-09-13': [],
 '2018-09-14': ['002666.SZ', '002280.SZ'],
 '2018-09-17': ['000911.SZ'],
 '2018-09-18': ['603703.SH'],
 '2018-09-19': ['603843.SH'],
 '2018-09-20': ['000806.SZ', '000586.SZ', '300483.SZ'],
 '2018-09-21': ['300247.SZ', '002002.SZ'],
 '2018-09-25': ['600746.SH', '600297.SH'],
 '2018-09-26': ['000593.SZ', '300104.SZ'],
 '2018-09-27': ['600746.SH'],
 '2018-09-28': [],
 '2018-10-08': [],
 '2018-10-10': [],
 '2018-10-11': ['300749.SZ', '300216.SZ'],
 '2018-10-12': ['002758.SZ', '002937.SZ', '002827.SZ'],
 '2018-10-15': ['300131.SZ'],
 '2018-10-16': ['603936.SH', '002528.SZ', '600239.SH'],
 '2018-10-17': ['600555.SH', '002054.SZ', '300266.SZ', '300392.SZ'],
 '2018-10-18': ['300508.SZ', '300748.SZ', '300635.SZ', '300736.SZ'],
 '2018-10-19': [],
 '2018-10-22': ['600071.SH', '601619.SH'],
 '2018-10-23': ['600306.SH',
  '000622.SZ',
  '300694.SZ',
  '600143.SH',
  '600816.SH',
  '601990.SH',
  '601377.SH'],
 '2018-10-24': ['002654.SZ', '002575.SZ', '002112.SZ'],
 '2018-10-25': ['002232.SZ', '002451.SZ'],
 '2018-10-26': ['603999.SH'],
 '2018-10-29': ['300279.SZ', '300492.SZ', '600173.SH'],
 '2018-10-31': ['300492.SZ'],
 '2018-11-01': ['300748.SZ', '300222.SZ', '603996.SH', '000633.SZ'],
 '2018-11-02': ['000559.SZ', '002689.SZ', '000150.SZ', '000633.SZ'],
 '2018-11-05': ['300724.SZ', '600319.SH', '300748.SZ', '002575.SZ'],
 '2018-11-06': ['000917.SZ',
  '002660.SZ',
  '600462.SH',
  '300274.SZ',
  '300122.SZ'],
 '2018-11-07': ['600290.SH',
  '600796.SH',
  '300688.SZ',
  '600635.SH',
  '002328.SZ',
  '300618.SZ',
  '600210.SH',
  '600053.SH',
  '603366.SH'],
 '2018-11-08': ['002575.SZ'],
 '2018-11-09': ['600624.SH',
  '002054.SZ',
  '002622.SZ',
  '000966.SZ',
  '300464.SZ',
  '002420.SZ',
  '600128.SH'],
 '2018-11-12': ['600683.SH', '300151.SZ'],
 '2018-11-13': ['600463.SH'],
 '2018-11-14': ['000835.SZ',
  '002054.SZ',
  '000068.SZ',
  '002571.SZ',
  '002295.SZ',
  '000533.SZ',
  '002584.SZ',
  '600235.SH',
  '002114.SZ',
  '002660.SZ'],
 '2018-11-15': ['000610.SZ',
  '300689.SZ',
  '000068.SZ',
  '300751.SZ',
  '002708.SZ'],
 '2018-11-16': ['603101.SH',
  '000058.SZ',
  '300236.SZ',
  '002177.SZ',
  '600461.SH'],
 '2018-11-19': ['000566.SZ',
  '300234.SZ',
  '600761.SH',
  '600053.SH',
  '600119.SH',
  '002026.SZ'],
 '2018-11-20': ['002141.SZ', '000856.SZ'],
 '2018-11-21': ['600825.SH', '002337.SZ', '300674.SZ'],
 '2018-11-22': ['002591.SZ', '300682.SZ'],
 '2018-11-23': ['601319.SH', '002676.SZ', '300449.SZ'],
 '2018-11-26': ['603220.SH'],
 '2018-11-27': ['000948.SZ'],
 '2018-11-28': ['300240.SZ', '603017.SH', '002288.SZ'],
 '2018-11-29': ['300343.SZ', '600936.SH'],
 '2018-12-03': ['601858.SH', '300698.SZ', '002103.SZ', '000722.SZ'],
 '2018-12-04': ['603335.SH'],
 '2018-12-05': [],
 '2018-12-06': ['300006.SZ'],
 '2018-12-07': [],
 '2018-12-12': ['002076.SZ'],
 '2018-12-13': ['300585.SZ'],
 '2018-12-18': ['002243.SZ'],
 '2018-12-19': ['300091.SZ', '002845.SZ'],
 '2018-12-21': [],
 '2018-12-25': ['000531.SZ'],
 '2018-12-26': ['300687.SZ', '002927.SZ'],
 '2018-12-27': ['300635.SZ', '300407.SZ', '300265.SZ'],
 '2018-12-28': ['300545.SZ', '601619.SH'],
 '2019-01-02': [],
 '2019-01-03': [],
 '2019-01-04': ['300125.SZ'],
 '2019-01-07': ['300215.SZ', '300588.SZ', '300299.SZ', '600571.SH'],
 '2019-01-08': ['300095.SZ',
  '600677.SH',
  '002498.SZ',
  '600353.SH',
  '300351.SZ',
  '002356.SZ',
  '002130.SZ'],
 '2019-01-09': ['600452.SH'],
 '2019-01-10': ['300076.SZ', '300328.SZ'],
 '2019-01-11': ['002941.SZ', '300096.SZ'],
 '2019-01-14': ['300111.SZ',
  '002548.SZ',
  '601068.SH',
  '300694.SZ',
  '600218.SH',
  '603220.SH',
  '000018.SZ'],
 '2019-01-15': [],
 '2019-01-16': ['600446.SH', '002063.SZ'],
 '2019-01-18': ['600470.SH', '300116.SZ', '300648.SZ', '600589.SH'],
 '2019-01-21': ['300693.SZ'],
 '2019-01-22': ['002755.SZ', '002170.SZ', '300503.SZ'],
 '2019-01-23': [],
 '2019-01-24': ['002481.SZ', '002170.SZ', '601811.SH'],
 '2019-01-25': ['600721.SH'],
 '2019-01-28': ['300547.SZ', '000637.SZ', '300096.SZ'],
 '2019-01-29': [],
 '2019-01-31': ['300250.SZ'],
 '2019-02-01': ['002011.SZ'],
 '2019-02-11': ['600532.SH', '000802.SZ'],
 '2019-02-12': ['600318.SH'],
 '2019-02-13': ['300097.SZ', '300566.SZ'],
 '2019-02-14': ['300097.SZ',
  '000536.SZ',
  '000725.SZ',
  '300256.SZ',
  '300566.SZ',
  '300128.SZ',
  '300263.SZ'],
 '2019-02-15': [],
 '2019-02-18': ['002045.SZ', '002099.SZ', '300512.SZ', '601208.SH'],
 '2019-02-19': ['300083.SZ',
  '002348.SZ',
  '002426.SZ',
  '300468.SZ',
  '002060.SZ',
  '300545.SZ',
  '300066.SZ',
  '600584.SH',
  '002006.SZ',
  '002660.SZ',
  '300466.SZ'],
 '2019-02-20': ['600135.SH', '600393.SH', '600095.SH'],
 '2019-02-21': ['002234.SZ',
  '002565.SZ',
  '002458.SZ',
  '600135.SH',
  '002435.SZ'],
 '2019-02-22': ['300211.SZ', '300063.SZ', '300555.SZ', '600572.SH'],
 '2019-02-25': ['300465.SZ',
  '600226.SH',
  '002453.SZ',
  '600061.SH',
  '002945.SZ',
  '300059.SZ',
  '002712.SZ',
  '300339.SZ',
  '600128.SH',
  '300663.SZ',
  '600643.SH',
  '600318.SH',
  '300377.SZ',
  '603859.SH',
  '600776.SH'],
 '2019-02-26': ['300348.SZ',
  '002657.SZ',
  '000859.SZ',
  '600446.SH',
  '600131.SH',
  '603383.SH',
  '002453.SZ',
  '000070.SZ',
  '000068.SZ',
  '600776.SH',
  '000536.SZ',
  '600509.SH',
  '600146.SH',
  '600331.SH',
  '601860.SH',
  '002423.SZ',
  '300211.SZ',
  '000563.SZ',
  '300638.SZ',
  '300115.SZ'],
 '2019-02-27': ['002123.SZ',
  '000666.SZ',
  '000812.SZ',
  '002204.SZ',
  '601106.SH',
  '300612.SZ']}
In [28]:
tradeday = list(get_trade_days(startdate, '20200202', count=None).strftime('%Y-%m-%d'))
for d in tradeday[:200]:
    if d in list(limitdt.keys()):
        if len(limitdt[d])==0:
            pass
        else:
            day = tradeday[tradeday.index(d)+1]
            stockdata = get_price(limitdt[d],None,day,'1m',['close'],True,'pre',bar_count=241,is_panel=1)
            import matplotlib.pyplot as plt
            import pandas as pd
            import numpy as np
            plt.style.use('seaborn')
            for s in list(stockdata['close'].columns):
                pc = stockdata['close'][s].iloc[0]
                highlimit = round(pc*1.1,2)
                lowlimit = round(pc*0.9,2)

                fig = plt.figure()
                axes = fig.add_axes([0.1, 0.1, 1, 0.5]) #插入面板

                x1_list=[highlimit]+list(stockdata['close'][s])[-240:]
                y=np.array(x1_list)
                x=np.array(range(0,len(x1_list)))
                axes.plot(x, y, 'y')

                axes.set_ylabel('price',fontsize=15)
                axes.set_title('{} Price trend - {} '.format(day,s),fontsize=18)
                #设置X轴
                axes.set_xticks([0,30,60,90,120,150,180,210,240])
                axes.set_xticklabels(['open','10:00','11:00','11:30','13:00','13:30','14:00','14:30','15:00'], fontsize=15)
                #设置y轴
                axes.set_yticks([lowlimit,highlimit])
In [29]:
datadf = pd.DataFrame(columns=['stock','date'])
for d in list(limitdt.keys()):
    for stock in limitdt[d]:
        datadf.loc[d]=[stock,d]
In [30]:
startdate = '20140101'
enddate = '20190227'
stock = list(get_all_securities('stock',enddate).index)
alldata = get_price(stock,startdate,enddate,'1d',['close','low','open','high'],True,'pre',is_panel=1)

closedf = alldata['close']
highdf = alldata['high']
lowdf = alldata['low']
opendf = alldata['open']
In [31]:
datadf['buyprice'] = datadf['date'].apply(lambda x:highdf.loc[x][datadf['stock'][x]])
datadf['当日收盘价'] = datadf['date'].apply(lambda x:closedf.loc[x][datadf['stock'][x]])
datadf = datadf[datadf['date']!='2019-02-25']
datadf = datadf[datadf['date']!='2019-02-26']
datadf = datadf[datadf['date']!='2019-02-27']#没有足够数据算第三天
for t in range(1,4):
    txt = str(t)+str('日收盘价')
    datadf[txt] = datadf['date'].apply(lambda x:closedf.loc[list(highdf.index)[list(highdf.index.strftime('%Y-%m-%d')).index(x)+t]][datadf['stock'][x]])/datadf['buyprice']-1
    txt = str(t)+str('日开盘价')
    datadf[txt] = datadf['date'].apply(lambda x:opendf.loc[list(highdf.index)[list(highdf.index.strftime('%Y-%m-%d')).index(x)+t]][datadf['stock'][x]])/datadf['buyprice']-1
    txt = str(t)+str('日最高价')
    datadf[txt] = datadf['date'].apply(lambda x:highdf.loc[list(highdf.index)[list(highdf.index.strftime('%Y-%m-%d')).index(x)+t]][datadf['stock'][x]])/datadf['buyprice']-1
    txt = str(t)+str('日最低价')
    datadf[txt] = datadf['date'].apply(lambda x:lowdf.loc[list(highdf.index)[list(highdf.index.strftime('%Y-%m-%d')).index(x)+t]][datadf['stock'][x]])/datadf['buyprice']-1
    
datadf
Out[31]:
stock date buyprice 当日收盘价 1日收盘价 1日开盘价 1日最高价 1日最低价 2日收盘价 2日开盘价 2日最高价 2日最低价 3日收盘价 3日开盘价 3日最高价 3日最低价
2018-04-10 300589.SZ 2018-04-10 14.94 14.09 0.038153 -0.072289 0.038153 -0.113119 0.141901 0.037483 0.141901 -0.013387 0.027443 0.099732 0.140562 0.027443
2015-02-04 000875.SZ 2015-02-04 5.28 5.28 0.100379 0.041667 0.100379 0.009470 0.090909 0.115530 0.181818 0.062500 0.009470 0.045455 0.077652 -0.017045
2015-07-14 000969.SZ 2015-07-14 12.88 12.88 -0.100155 -0.011646 -0.010093 -0.100155 -0.068323 -0.103261 -0.049689 -0.190217 -0.010870 -0.067547 -0.004658 -0.078416
2018-11-20 000856.SZ 2018-11-20 14.07 14.07 0.055437 -0.026297 0.100213 -0.050462 -0.001421 0.016347 0.041222 -0.021322 0.014925 -0.014215 0.073205 -0.015636
2014-04-03 000918.SZ 2014-04-03 3.11 3.03 -0.045016 -0.054662 -0.032154 -0.083601 -0.080386 -0.057878 -0.045016 -0.086817 -0.093248 -0.077170 -0.070740 -0.102894
2018-09-27 600746.SH 2018-09-27 6.67 6.18 0.019490 -0.058471 0.019490 -0.058471 -0.041979 0.038981 0.106447 -0.041979 -0.079460 -0.046477 -0.016492 -0.092954
2018-05-16 300175.SZ 2018-05-16 6.18 6.18 0.006472 0.100324 0.100324 0.003236 -0.056634 -0.045307 -0.019417 -0.063107 -0.072816 -0.087379 -0.066343 -0.098706
2017-05-02 000158.SZ 2017-05-02 11.84 11.84 0.036318 0.041385 0.089527 0.023649 0.007601 -0.008446 0.069257 -0.028716 -0.069257 -0.034628 -0.007601 -0.070946
2016-11-16 002564.SZ 2016-11-16 10.43 10.43 -0.033557 0.006711 0.029722 -0.040268 0.006711 -0.018217 0.054650 -0.030681 0.018217 0.014382 0.063279 -0.012464
2018-04-02 002712.SZ 2018-04-02 12.77 12.59 -0.054033 -0.057948 -0.033673 -0.066562 -0.071261 -0.054033 -0.043070 -0.071261 -0.067345 -0.069695 -0.067345 -0.089272
2015-06-24 300126.SZ 2015-06-24 45.05 45.05 -0.100111 -0.002220 0.002220 -0.100111 -0.190233 -0.190233 -0.190233 -0.190233 -0.271254 -0.271254 -0.271254 -0.271254
2018-12-19 002845.SZ 2018-12-19 15.77 15.77 0.020926 0.014585 0.093849 0.000000 -0.020292 -0.015853 0.006975 -0.047559 0.016487 -0.024731 0.056436 -0.034242
2017-08-29 603042.SH 2017-08-29 33.56 33.56 0.100417 -0.021454 0.100417 -0.027414 0.076281 0.031585 0.103397 0.008641 0.030691 0.056317 0.093564 0.027712
2015-10-27 600207.SH 2015-10-27 9.56 9.56 0.100418 0.047071 0.100418 0.035565 0.210251 0.210251 0.210251 0.155858 0.331590 0.315900 0.331590 0.284519
2015-07-21 000638.SZ 2015-07-21 15.32 15.32 0.099869 0.054178 0.099869 0.037859 0.174935 0.168407 0.204308 0.095953 0.127285 0.155352 0.207572 0.096606
2018-01-17 300698.SZ 2018-01-17 29.44 29.44 0.029891 0.045177 0.096128 -0.035326 0.133152 -0.000679 0.133152 -0.003057 0.019701 0.068954 0.082541 0.019701
2017-05-18 603728.SH 2017-05-18 24.21 24.21 -0.099959 -0.036349 -0.019827 -0.099959 -0.190004 -0.168938 -0.154895 -0.190004 -0.235440 -0.211070 -0.202396 -0.252375
2018-11-29 600936.SH 2018-11-29 5.10 4.77 -0.154902 -0.109804 -0.107843 -0.158824 -0.117647 -0.158824 -0.090196 -0.162745 -0.133333 -0.133333 -0.129412 -0.150980
2015-04-22 000410.SZ 2015-04-22 27.34 27.34 0.033650 0.023409 0.100219 0.015728 0.087052 0.051939 0.118508 0.034748 0.039868 0.087052 0.096562 0.024872
2017-08-04 000616.SZ 2017-08-04 4.87 4.87 -0.016427 0.004107 0.016427 -0.024641 -0.053388 -0.045175 -0.024641 -0.061602 -0.063655 -0.057495 -0.049281 -0.067762
2015-09-25 600876.SH 2015-09-25 28.18 28.18 0.100071 0.069198 0.100071 0.013485 0.210078 0.112136 0.210078 0.112136 0.090490 0.270405 0.282825 0.089070
2014-12-24 002239.SZ 2014-12-24 2.34 2.34 0.106838 0.008547 0.106838 0.000000 0.059829 0.158120 0.179487 0.055556 -0.008547 0.034188 0.034188 -0.025641
2015-10-19 600397.SH 2015-10-19 7.40 7.40 -0.005405 0.047297 0.075676 -0.020270 -0.105405 -0.033784 0.032432 -0.105405 -0.035135 -0.114865 -0.016216 -0.116216
2016-12-14 600722.SH 2016-12-14 12.08 12.08 0.100166 0.084437 0.100166 0.039735 NaN NaN NaN NaN NaN NaN NaN NaN
2015-01-30 002740.SZ 2015-01-30 13.87 13.87 -0.090123 0.006489 0.059841 -0.091565 -0.123288 -0.132660 -0.106705 -0.144196 -0.090844 -0.122567 -0.073540 -0.137707
2018-07-04 000802.SZ 2018-07-04 13.33 13.33 0.089272 0.079520 0.099775 0.043511 0.198050 0.079520 0.198050 0.060765 0.140285 0.288822 0.288822 0.110278
2015-07-16 600695.SH 2015-07-16 7.63 7.63 0.099607 0.022280 0.099607 0.006553 0.166448 0.133683 0.195282 0.099607 0.254260 0.166448 0.263434 0.108781
2015-01-14 000498.SZ 2015-01-14 5.55 5.55 0.000000 0.070270 0.100901 -0.036036 -0.019820 -0.050450 -0.003604 -0.059459 -0.106306 -0.055856 -0.052252 -0.118919
2018-09-20 300483.SZ 2018-09-20 28.86 27.41 -0.039848 -0.084893 -0.013514 -0.084893 -0.055787 -0.060984 -0.032225 -0.071033 -0.063756 -0.060638 -0.040194 -0.068607
2018-05-04 002889.SZ 2018-05-04 33.28 33.28 0.027644 -0.003305 0.066707 -0.014123 0.130409 0.010216 0.130409 0.010216 0.039062 0.081731 0.111478 0.030048
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2018-10-11 300216.SZ 2018-10-11 5.40 5.40 -0.068519 0.007407 0.007407 -0.083333 -0.092593 -0.101852 -0.012963 -0.131481 -0.001852 -0.092593 -0.001852 -0.118519
2015-10-26 000019.SZ 2015-10-26 8.18 7.97 -0.057457 -0.108802 -0.035452 -0.113692 -0.015892 -0.079462 0.036675 -0.083130 0.084352 -0.013447 0.084352 -0.028117
2017-09-01 300348.SZ 2017-09-01 23.38 23.38 -0.012404 0.010265 0.049615 -0.014115 0.020958 -0.028657 0.066724 -0.028657 0.023952 0.002994 0.049615 -0.006843
2014-08-14 300208.SZ 2014-08-14 4.08 4.08 -0.009804 0.031863 0.053922 -0.024510 0.088235 -0.004902 0.088235 -0.022059 0.110294 0.053922 0.156863 0.053922
2018-09-06 002848.SZ 2018-09-06 10.01 10.01 0.099900 0.064935 0.099900 0.002997 -0.009990 0.093906 0.144855 -0.009990 0.088911 -0.046953 0.088911 -0.076923
2019-02-13 300566.SZ 2019-02-13 14.67 14.67 0.050443 0.100204 0.100204 0.049761 0.085890 -0.007498 0.143149 -0.010225 0.098160 0.060668 0.102931 0.039536
2018-10-15 300131.SZ 2018-10-15 4.73 4.70 -0.080338 -0.023256 -0.010571 -0.088795 0.012685 -0.090909 0.012685 -0.090909 0.010571 0.046512 0.114165 0.000000
2018-05-21 002828.SZ 2018-05-21 17.92 17.92 0.100446 0.046875 0.100446 0.019531 0.210937 0.210937 0.210937 0.155692 NaN NaN NaN NaN
2014-07-11 002629.SZ 2014-07-11 7.43 7.23 0.034993 -0.026918 0.069987 -0.040377 -0.018843 0.051144 0.061911 -0.033647 -0.033647 -0.021534 0.017497 -0.069987
2014-12-16 002392.SZ 2014-12-16 6.94 6.94 0.007205 0.000000 0.034582 -0.012968 -0.004323 -0.012968 0.004323 -0.027378 -0.043228 -0.005764 0.014409 -0.070605
2015-01-06 601918.SH 2015-01-06 6.92 6.92 -0.065029 -0.052023 -0.036127 -0.073699 0.028902 -0.062139 0.028902 -0.072254 -0.030347 0.004335 0.010116 -0.037572
2018-12-25 000531.SZ 2018-12-25 5.48 5.48 -0.023723 0.005474 0.054745 -0.025547 -0.051095 -0.032847 0.031022 -0.063869 -0.076642 -0.054745 -0.041971 -0.078467
2017-01-13 600576.SH 2017-01-13 22.24 22.24 0.038219 -0.060252 0.097122 -0.073291 0.076439 0.018885 0.124101 -0.007194 0.041367 0.067896 0.094874 0.022032
2015-07-20 002176.SZ 2015-07-20 9.21 9.21 0.099891 0.003257 0.099891 0.000000 0.158523 0.131379 0.191097 0.074919 0.183496 0.131379 0.205212 0.121607
2015-06-03 000558.SZ 2015-06-03 23.96 23.96 -0.020451 0.065526 0.081803 -0.096828 -0.109766 -0.039649 -0.038397 -0.112688 -0.173623 -0.126461 -0.126461 -0.192821
2014-02-28 600680.SH 2014-02-28 13.26 13.26 0.100302 0.045249 0.100302 0.045249 0.210407 0.118401 0.210407 0.105581 0.331825 0.272247 0.331825 0.272247
2015-07-15 000837.SZ 2015-07-15 12.77 12.23 -0.027408 -0.103367 0.008614 -0.136257 0.069695 -0.027408 0.069695 -0.035239 0.112764 0.084573 0.151135 0.049334
2018-08-01 002401.SZ 2018-08-01 11.21 11.21 0.035682 0.001784 0.064228 -0.014273 -0.012489 0.008029 0.045495 -0.013381 -0.111508 -0.045495 -0.040143 -0.111508
2018-08-29 603050.SH 2018-08-29 13.64 13.64 0.079912 0.025660 0.099707 -0.019062 -0.027859 0.013930 0.021994 -0.027859 -0.062317 -0.066716 -0.050587 -0.096041
2014-10-20 000018.SZ 2014-10-20 3.92 3.92 -0.045918 -0.017857 -0.012755 -0.045918 -0.084184 -0.045918 -0.028061 -0.084184 -0.109694 -0.096939 -0.079082 -0.130102
2015-07-30 300368.SZ 2015-07-30 9.81 9.81 0.100917 -0.002039 0.100917 -0.040775 0.211009 0.113150 0.211009 0.076453 0.332314 0.332314 0.332314 0.298675
2015-03-17 000752.SZ 2015-03-17 18.10 17.65 -0.020994 -0.049171 -0.018785 -0.054696 -0.028729 -0.032044 -0.022099 -0.044751 -0.025414 -0.029834 -0.018785 -0.039779
2018-07-27 600186.SH 2018-07-27 2.49 2.34 -0.136546 -0.092369 -0.048193 -0.152610 -0.148594 -0.128514 -0.116466 -0.156627 -0.136546 -0.144578 -0.116466 -0.156627
2018-03-16 002264.SZ 2018-03-16 8.95 8.95 0.100559 0.049162 0.100559 0.039106 0.128492 0.098324 0.173184 0.061453 0.241341 0.092737 0.241341 0.092737
2018-09-10 600312.SH 2018-09-10 5.46 5.46 0.051282 0.007326 0.089744 -0.014652 0.075092 0.016484 0.120879 0.000000 0.117216 0.067766 0.117216 0.056777
2017-01-24 000605.SZ 2017-01-24 16.59 16.59 -0.050030 0.009042 0.037975 -0.076552 -0.054852 -0.072333 -0.018083 -0.081374 -0.068113 -0.059675 -0.048825 -0.089210
2015-06-12 300459.SZ 2015-06-12 8.75 8.75 -0.100571 -0.100571 -0.100571 -0.100571 -0.192000 -0.192000 -0.192000 -0.192000 -0.238857 -0.273143 -0.195429 -0.273143
2014-07-16 000868.SZ 2014-07-16 5.92 5.92 -0.096284 -0.052365 -0.042230 -0.099662 -0.141892 -0.116554 -0.092905 -0.141892 -0.130068 -0.148649 -0.128378 -0.162162
2015-12-01 600165.SH 2015-12-01 26.61 26.61 -0.099962 -0.092446 -0.092446 -0.099962 -0.065765 -0.189778 -0.034949 -0.189778 -0.090192 -0.087561 -0.022924 -0.094325
2018-12-13 300585.SZ 2018-12-13 11.25 10.80 -0.103111 -0.100444 -0.073778 -0.112000 -0.114667 -0.111111 -0.098667 -0.134222 -0.133333 -0.130667 -0.119111 -0.148444

508 rows × 16 columns

In [32]:
dataclose = datadf[['1日收盘价','2日收盘价','3日收盘价']]
dataclose.describe()
Out[32]:
1日收盘价 2日收盘价 3日收盘价
count 500.000000 493.000000 499.000000
mean -0.001599 -0.004058 -0.005465
std 0.070997 0.101881 0.123285
min -0.250679 -0.310462 -0.338995
25% -0.054269 -0.070144 -0.085253
50% -0.001160 -0.014862 -0.021176
75% 0.050653 0.059829 0.060438
max 0.106838 0.215162 0.338628
In [33]:
dataopen = datadf[['1日开盘价','2日开盘价','3日开盘价']]
dataopen.describe()
Out[33]:
1日开盘价 2日开盘价 3日开盘价
count 500.000000 493.000000 499.000000
mean -0.008970 -0.010114 -0.010622
std 0.051738 0.094574 0.117361
min -0.177438 -0.275815 -0.307745
25% -0.040579 -0.069217 -0.085949
50% -0.003126 -0.020443 -0.027778
75% 0.021702 0.031447 0.041880
max 0.101010 0.211526 0.332314
In [34]:
datahigh = datadf[['1日最高价','2日最高价','3日最高价']]
datahigh.describe()
Out[34]:
1日最高价 2日最高价 3日最高价
count 500.000000 493.000000 499.000000
mean 0.038950 0.034591 0.030486
std 0.056496 0.098113 0.124961
min -0.151495 -0.247962 -0.303668
25% -0.002902 -0.032316 -0.054733
50% 0.048349 0.018853 0.010163
75% 0.099398 0.100202 0.096591
max 0.106838 0.215162 0.338710
In [35]:
datalow = datadf[['1日最低价','2日最低价','3日最低价']]
datalow.describe()
Out[35]:
1日最低价 2日最低价 3日最低价
count 500.000000 493.000000 499.000000
mean -0.044232 -0.042589 -0.041151
std 0.054473 0.090011 0.110356
min -0.250679 -0.323370 -0.357337
25% -0.087772 -0.094737 -0.112568
50% -0.040260 -0.049157 -0.054870
75% -0.008182 0.001862 0.014093
max 0.100851 0.211173 0.331852
In [36]:
dataclosedf = datadf[['stock','date','1日收盘价','2日收盘价','3日收盘价']]
dataclosedf = dataclosedf.sort_values(by='1日收盘价',ascending=False)
# dataclosedf = dataclosedf.dropna(axis=0,how='any')
dataclosedf
Out[36]:
stock date 1日收盘价 2日收盘价 3日收盘价
2014-12-24 002239.SZ 2014-12-24 0.106838 0.059829 -0.008547
2015-01-12 002738.SZ 2015-01-12 0.102527 0.215162 0.338628
2015-07-13 002685.SZ 2015-07-13 0.101179 -0.009823 -0.008841
2018-11-28 002288.SZ 2018-11-28 0.100939 0.211268 0.333333
2015-07-30 300368.SZ 2015-07-30 0.100917 0.211009 0.332314
2018-08-08 600470.SH 2018-08-08 0.100858 -0.006438 -0.062232
2015-07-10 002446.SZ 2015-07-10 0.100851 0.211526 0.089064
2014-07-28 600157.SH 2014-07-28 0.100806 0.213710 0.266129
2018-11-01 000633.SZ 2018-11-01 0.100791 0.128458 0.015810
2015-04-02 002006.SZ 2015-04-02 0.100775 0.136090 0.090439
2014-08-22 300356.SZ 2014-08-22 0.100775 0.075305 0.160576
2018-08-07 300392.SZ 2018-08-07 0.100741 0.210370 0.331852
2017-03-15 002850.SZ 2017-03-15 0.100696 0.054946 0.039382
2015-06-01 300149.SZ 2015-06-01 0.100665 0.211530 0.101109
2015-10-09 002684.SZ 2015-10-09 0.100629 0.139064 0.150943
2015-03-16 600207.SH 2015-03-16 0.100559 0.150838 0.113128
2018-11-15 002708.SZ 2018-11-15 0.100559 0.211173 0.331844
2018-03-16 002264.SZ 2018-03-16 0.100559 0.128492 0.241341
2015-04-15 002044.SZ 2015-04-15 0.100550 0.044776 0.147683
2014-09-12 300161.SZ 2014-09-12 0.100540 0.089744 0.057355
2016-11-01 300044.SZ 2016-11-01 0.100524 0.067016 0.086911
2018-05-21 002828.SZ 2018-05-21 0.100446 0.210937 NaN
2015-08-26 000628.SZ 2015-08-26 0.100437 0.210480 0.089083
2014-09-19 000852.SZ 2014-09-19 0.100434 0.115933 0.115313
2015-10-27 600207.SH 2015-10-27 0.100418 0.210251 0.331590
2017-08-29 603042.SH 2017-08-29 0.100417 0.076281 0.030691
2015-02-04 000875.SZ 2015-02-04 0.100379 0.090909 0.009470
2017-03-13 601212.SH 2017-03-13 0.100375 0.211069 0.332083
2015-12-02 000668.SZ 2015-12-02 0.100338 0.066892 0.071778
2014-02-28 600680.SH 2014-02-28 0.100302 0.210407 0.331825
... ... ... ... ... ...
2018-11-27 000948.SZ 2018-11-27 -0.114783 -0.160870 -0.149565
2016-03-08 600882.SH 2016-03-08 -0.115694 -0.170020 -0.195171
2017-10-13 300062.SZ 2017-10-13 -0.116814 -0.122124 -0.132743
2015-02-03 000586.SZ 2015-02-03 -0.117314 -0.149676 -0.064725
2018-12-27 300265.SZ 2018-12-27 -0.118421 -0.072368 0.020833
2017-03-30 002040.SZ 2017-03-30 -0.122374 -0.159602 -0.136380
2015-05-14 002625.SZ 2015-05-14 -0.123490 -0.044954 -0.101812
2015-10-23 300081.SZ 2015-10-23 -0.125994 -0.099694 -0.185321
2018-06-15 002423.SZ 2018-06-15 -0.133379 -0.112859 -0.178523
2015-07-27 600728.SH 2015-07-27 -0.135387 -0.049427 -0.114613
2018-07-27 600186.SH 2018-07-27 -0.136546 -0.148594 -0.136546
2018-07-03 002211.SZ 2018-07-03 -0.141892 -0.201351 -0.229730
2017-04-14 000616.SZ 2017-04-14 -0.145425 -0.145425 -0.156863
2015-04-27 300188.SZ 2015-04-27 -0.150334 NaN -0.149220
2018-12-06 300006.SZ 2018-12-06 -0.154472 -0.203252 -0.199187
2015-10-30 000019.SZ 2015-10-30 -0.154713 -0.211066 -0.163934
2018-11-29 600936.SH 2018-11-29 -0.154902 -0.117647 -0.133333
2018-04-11 300705.SZ 2018-04-11 -0.164298 -0.224263 -0.236742
2018-10-26 603999.SH 2018-10-26 -0.177391 -0.160000 -0.161739
2014-12-22 600169.SH 2014-12-22 -0.181612 -0.205448 -0.125993
2018-10-25 002451.SZ 2018-10-25 -0.183314 -0.212691 -0.203290
2019-01-28 300096.SZ 2019-01-28 -0.250679 -0.310462 -0.338995
2016-02-17 600234.SH 2016-02-17 NaN NaN NaN
2017-04-11 002774.SZ 2017-04-11 NaN NaN -0.100352
2014-02-12 000971.SZ 2014-02-12 NaN NaN -0.027473
2015-03-24 300310.SZ 2015-03-24 NaN -0.071142 -0.044088
2018-01-10 600652.SH 2018-01-10 NaN NaN -0.083893
2016-03-03 000982.SZ 2016-03-03 NaN NaN NaN
2017-04-12 000605.SZ 2017-04-12 NaN NaN -0.100194
2018-05-14 002930.SZ 2018-05-14 NaN NaN 0.099928

508 rows × 5 columns

In [37]:
dt = dataclosedf
dt = dt.sort_values(by='date')

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np


plt.style.use('seaborn')
fig = plt.figure()
axes = fig.add_axes([0.1, 0.1, 1, 0.618]) #插入面板

x1_list=list(dt['1日收盘价'])
y=np.array(x1_list)
x=np.array(range(0,len(x1_list)))
axes.scatter(x,y,c='tomato')
axes.set_xlabel('time',fontsize=15)
axes.set_ylabel('down_up',fontsize=15)
axes.set_title(' one day distribution',fontsize=18)
# #设置X轴
axes.set_xticks([0,100,200,300,400,500])
axes.set_xticklabels([list(dt.index)[0],list(dt.index)[100],list(dt.index)[200],list(dt.index)[300],list(dt.index)[400],list(dt.index)[500]],fontsize=15)

plt.style.use('seaborn')
fig = plt.figure()
axes = fig.add_axes([0.1, 0.1, 1, 0.618]) #插入面板

x1_list=list(dt['2日收盘价'])
y=np.array(x1_list)
x=np.array(range(0,len(x1_list)))
axes.scatter(x,y,c='tomato')
axes.set_xlabel('time',fontsize=15)
axes.set_ylabel('down_up',fontsize=15)
axes.set_title(' two day distribution',fontsize=18)
# #设置X轴
axes.set_xticks([0,100,200,300,400,500])
axes.set_xticklabels([list(dt.index)[0],list(dt.index)[100],list(dt.index)[200],list(dt.index)[300],list(dt.index)[400],list(dt.index)[500]],fontsize=15)

plt.style.use('seaborn')
fig = plt.figure()
axes = fig.add_axes([0.1, 0.1, 1, 0.618]) #插入面板

x1_list=list(dt['3日收盘价'])
y=np.array(x1_list)
x=np.array(range(0,len(x1_list)))
axes.scatter(x,y,c='tomato')
axes.set_xlabel('time',fontsize=15)
axes.set_ylabel('down_up',fontsize=15)
axes.set_title(' three day distribution',fontsize=18)
# #设置X轴
axes.set_xticks([0,100,200,300,400,500])
axes.set_xticklabels([list(dt.index)[0],list(dt.index)[100],list(dt.index)[200],list(dt.index)[300],list(dt.index)[400],list(dt.index)[500]],fontsize=15)
Out[37]:
[<matplotlib.text.Text at 0x7efb3f5bbc50>,
 <matplotlib.text.Text at 0x7efb445ddba8>,
 <matplotlib.text.Text at 0x7efb448cacc0>,
 <matplotlib.text.Text at 0x7efb448ca3c8>,
 <matplotlib.text.Text at 0x7efb4450a080>,
 <matplotlib.text.Text at 0x7efb443d3ac8>]
In [38]:
labeldt = dataclosedf
labeldt['1日收盘价'] = labeldt['1日收盘价'].apply(lambda x:1 if x>0 else -1)
labeldt['2日收盘价'] = labeldt['2日收盘价'].apply(lambda x:1 if x>0 else -1)
labeldt['3日收盘价'] = labeldt['3日收盘价'].apply(lambda x:1 if x>0 else -1)
labeldt = labeldt.sort_values(by='date')
labeldt
Out[38]:
stock date 1日收盘价 2日收盘价 3日收盘价
2014-01-16 000767.SZ 2014-01-16 -1 -1 -1
2014-02-12 000971.SZ 2014-02-12 -1 -1 -1
2014-02-21 000554.SZ 2014-02-21 -1 -1 -1
2014-02-28 600680.SH 2014-02-28 1 1 1
2014-03-10 300116.SZ 2014-03-10 -1 -1 -1
2014-03-13 000923.SZ 2014-03-13 -1 1 1
2014-03-27 000687.SZ 2014-03-27 -1 -1 -1
2014-04-03 000918.SZ 2014-04-03 -1 -1 -1
2014-04-10 300278.SZ 2014-04-10 1 1 1
2014-04-30 601001.SH 2014-04-30 1 -1 -1
2014-05-21 002660.SZ 2014-05-21 1 1 1
2014-06-04 600601.SH 2014-06-04 -1 -1 -1
2014-06-05 600074.SH 2014-06-05 -1 -1 -1
2014-06-06 002535.SZ 2014-06-06 1 1 1
2014-06-16 300198.SZ 2014-06-16 -1 -1 -1
2014-06-30 002093.SZ 2014-06-30 -1 -1 -1
2014-07-02 300288.SZ 2014-07-02 1 1 1
2014-07-04 002070.SZ 2014-07-04 -1 -1 -1
2014-07-07 600568.SH 2014-07-07 -1 1 1
2014-07-11 002629.SZ 2014-07-11 1 -1 -1
2014-07-16 000868.SZ 2014-07-16 -1 -1 -1
2014-07-25 600319.SH 2014-07-25 -1 1 1
2014-07-28 600157.SH 2014-07-28 1 1 1
2014-08-07 600556.SH 2014-08-07 -1 -1 -1
2014-08-11 600222.SH 2014-08-11 -1 -1 -1
2014-08-14 300208.SZ 2014-08-14 -1 1 1
2014-08-18 002125.SZ 2014-08-18 1 -1 1
2014-08-21 000922.SZ 2014-08-21 1 1 1
2014-08-22 300356.SZ 2014-08-22 1 1 1
2014-09-02 600691.SH 2014-09-02 1 1 1
... ... ... ... ... ...
2018-12-19 002845.SZ 2018-12-19 1 -1 1
2018-12-25 000531.SZ 2018-12-25 -1 -1 -1
2018-12-26 002927.SZ 2018-12-26 -1 -1 -1
2018-12-27 300265.SZ 2018-12-27 -1 -1 1
2018-12-28 601619.SH 2018-12-28 -1 -1 -1
2019-01-04 300125.SZ 2019-01-04 1 1 1
2019-01-07 600571.SH 2019-01-07 -1 -1 -1
2019-01-08 002130.SZ 2019-01-08 -1 -1 -1
2019-01-09 600452.SH 2019-01-09 1 1 1
2019-01-10 300328.SZ 2019-01-10 -1 -1 -1
2019-01-11 300096.SZ 2019-01-11 -1 -1 -1
2019-01-14 000018.SZ 2019-01-14 -1 -1 -1
2019-01-16 002063.SZ 2019-01-16 1 1 1
2019-01-18 600589.SH 2019-01-18 1 -1 -1
2019-01-21 300693.SZ 2019-01-21 -1 1 1
2019-01-22 300503.SZ 2019-01-22 -1 -1 -1
2019-01-24 601811.SH 2019-01-24 1 -1 -1
2019-01-25 600721.SH 2019-01-25 1 -1 -1
2019-01-28 300096.SZ 2019-01-28 -1 -1 -1
2019-01-31 300250.SZ 2019-01-31 1 1 1
2019-02-01 002011.SZ 2019-02-01 -1 -1 -1
2019-02-11 000802.SZ 2019-02-11 -1 -1 -1
2019-02-12 600318.SH 2019-02-12 1 -1 -1
2019-02-13 300566.SZ 2019-02-13 1 1 1
2019-02-14 300263.SZ 2019-02-14 -1 1 1
2019-02-18 601208.SH 2019-02-18 -1 -1 -1
2019-02-19 300466.SZ 2019-02-19 -1 -1 -1
2019-02-20 600095.SH 2019-02-20 -1 -1 -1
2019-02-21 002435.SZ 2019-02-21 -1 1 -1
2019-02-22 600572.SH 2019-02-22 1 1 1

508 rows × 5 columns

In [39]:
tradeday = list(get_trade_days(startdate, '20200202', count=None).strftime('%Y-%m-%d'))

timelist = []
trlist= []
lplist =[]
q_trlist = []
for d in tradeday:
    time = 0
    tr = 0
    lp = 0
    q_tr = 0
    if d in list(labeldt['date']):
        stock = labeldt['stock'][d]
        day = tradeday[tradeday.index(d)+1]
        stockdata = get_price(stock,None,day,'1m',['close','high','low','open','turnover_rate'],True,'pre',bar_count=241,is_panel=0)
        
        pc = stockdata.iloc[0].close
        highlimit = round(pc*1.1,2)
        
        stockdata = stockdata.iloc[-240:]
        
        for m in list(range(0,240)):
            
            rc = stockdata.iloc[m].close
            h = stockdata.iloc[(m+1)].high
            
            if rc == highlimit:
                q_tr +=stockdata.iloc[m].turnover_rate
                
            if rc<highlimit:
                time += 1
                tr +=stockdata.iloc[m].turnover_rate
                lp = min(stockdata.iloc[m].low/highlimit-1,lp)
            
            if rc<highlimit and h == highlimit:
                break
        if time>0:
            timelist.append(time)
            trlist.append(round(tr,2))
            lplist.append(round(lp*100,2))
            q_trlist.append(round(q_tr,2))
timelist
Out[39]:
[2,
 209,
 1,
 1,
 1,
 1,
 25,
 1,
 2,
 1,
 2,
 1,
 1,
 3,
 1,
 5,
 228,
 19,
 11,
 60,
 1,
 1,
 1,
 6,
 95,
 3,
 1,
 211,
 1,
 6,
 2,
 1,
 6,
 11,
 102,
 1,
 4,
 135,
 69,
 2,
 1,
 1,
 236,
 149,
 52,
 6,
 3,
 2,
 2,
 1,
 6,
 113,
 1,
 1,
 1,
 4,
 38,
 1,
 6,
 1,
 14,
 180,
 1,
 1,
 1,
 42,
 1,
 41,
 2,
 1,
 7,
 33,
 31,
 2,
 43,
 26,
 1,
 1,
 126,
 1,
 5,
 30,
 132,
 1,
 5,
 65,
 4,
 2,
 5,
 5,
 20,
 22,
 2,
 6,
 166,
 1,
 2,
 6,
 1,
 1,
 4,
 26,
 3,
 2,
 4,
 1,
 3,
 1,
 4,
 25,
 2,
 2,
 83,
 1,
 5,
 7,
 3,
 3,
 1,
 1,
 8,
 184,
 19,
 2,
 1,
 187,
 1,
 2,
 4,
 3,
 56,
 10,
 2,
 15,
 2,
 1,
 1,
 3,
 1,
 1,
 1,
 1,
 3,
 1,
 1,
 2,
 1,
 8,
 51,
 2,
 2,
 1,
 2,
 2,
 1,
 1,
 3,
 1,
 60,
 2,
 1,
 1,
 3,
 1,
 2,
 1,
 2,
 228,
 5,
 27,
 179,
 1,
 1,
 21,
 8,
 1,
 1,
 17,
 1,
 82,
 1,
 1,
 1,
 2,
 84,
 2,
 1,
 148,
 2,
 1,
 1,
 1,
 1,
 2,
 1,
 2,
 3,
 3,
 1,
 2,
 8,
 3,
 1,
 1,
 1,
 1,
 1,
 2,
 1,
 2,
 1,
 1,
 47,
 2,
 171,
 1,
 1,
 1,
 2,
 4,
 1,
 1,
 2,
 2,
 120,
 1,
 30,
 3,
 1,
 1,
 1,
 1,
 1,
 1,
 106,
 183,
 1,
 1,
 26,
 1,
 127,
 18,
 1,
 2,
 4,
 1,
 1,
 2,
 1,
 1,
 2,
 1,
 16,
 201,
 3,
 88,
 1,
 1,
 1,
 53,
 1,
 1,
 2,
 1,
 1,
 1,
 2,
 1,
 5,
 1,
 9,
 8,
 28,
 1,
 156,
 1,
 43,
 5,
 24,
 16,
 2,
 1,
 5,
 1,
 10,
 1,
 1,
 33,
 203,
 1,
 1,
 7,
 31,
 55,
 229,
 2,
 1,
 1,
 1,
 118,
 45,
 2,
 2,
 2,
 1,
 77,
 2,
 120,
 2,
 45,
 58,
 2,
 2,
 22,
 1,
 1,
 1,
 4,
 1,
 6,
 3,
 1,
 140,
 6,
 65,
 40,
 1,
 43,
 23,
 1,
 5,
 10,
 1,
 1,
 1,
 6,
 1,
 181,
 5,
 1,
 1,
 1,
 34,
 3,
 7,
 1,
 86,
 1,
 1,
 1,
 10,
 1,
 2,
 1,
 1,
 10,
 1,
 10,
 66,
 1,
 114,
 1,
 1,
 1,
 1,
 12,
 189,
 1,
 1,
 7,
 1,
 11,
 1,
 114,
 1,
 12,
 1,
 2,
 1,
 17,
 1,
 1,
 42,
 1,
 1,
 2,
 31,
 1,
 2,
 1,
 1,
 6,
 2,
 4,
 1,
 13,
 1,
 1,
 75,
 15,
 1,
 21,
 3,
 1,
 27,
 13,
 1,
 6,
 2,
 10,
 1,
 1,
 1,
 1,
 1,
 2,
 1,
 46,
 1,
 2,
 1,
 1,
 3,
 125,
 1,
 1,
 40,
 1,
 47,
 1,
 2,
 1,
 5,
 1,
 1,
 2,
 26,
 1,
 1,
 22,
 1,
 30,
 25,
 3,
 4,
 2,
 5,
 4,
 1,
 108,
 23,
 1,
 1,
 1,
 3,
 2,
 1,
 1,
 113,
 1,
 1,
 1,
 1,
 2,
 1,
 1,
 27,
 1,
 1,
 11,
 154,
 1,
 58,
 1,
 1,
 42,
 84,
 5,
 2,
 1,
 2,
 3,
 11,
 6,
 1,
 1,
 27,
 9,
 7,
 6,
 2,
 1,
 1,
 1,
 1,
 175,
 1,
 15,
 1,
 2,
 1,
 2,
 91,
 1,
 1,
 1,
 2,
 5]
In [40]:
labeldt['time'] = timelist
labeldt['Change'] = trlist
labeldt['drop range'] = lplist
labeldt['limit Change'] = q_trlist
labeldt
Out[40]:
stock date 1日收盘价 2日收盘价 3日收盘价 time Change drop range limit Change
2014-01-16 000767.SZ 2014-01-16 -1 -1 -1 2 0.23 -2.27 0.00
2014-02-12 000971.SZ 2014-02-12 -1 -1 -1 209 10.74 -7.14 0.00
2014-02-21 000554.SZ 2014-02-21 -1 -1 -1 1 3.99 -1.19 9.58
2014-02-28 600680.SH 2014-02-28 1 1 1 1 0.79 -0.60 1.95
2014-03-10 300116.SZ 2014-03-10 -1 -1 -1 1 1.16 -1.14 15.01
2014-03-13 000923.SZ 2014-03-13 -1 1 1 1 1.42 -1.99 2.48
2014-03-27 000687.SZ 2014-03-27 -1 -1 -1 25 8.88 -7.78 1.11
2014-04-03 000918.SZ 2014-04-03 -1 -1 -1 1 0.68 -4.82 0.43
2014-04-10 300278.SZ 2014-04-10 1 1 1 2 4.56 -2.59 3.06
2014-04-30 601001.SH 2014-04-30 1 -1 -1 1 0.17 -0.81 0.64
2014-05-21 002660.SZ 2014-05-21 1 1 1 2 2.72 -1.87 0.88
2014-06-04 600601.SH 2014-06-04 -1 -1 -1 1 1.00 -2.28 0.00
2014-06-05 600074.SH 2014-06-05 -1 -1 -1 1 1.00 -1.17 2.63
2014-06-06 002535.SZ 2014-06-06 1 1 1 3 2.15 -2.86 1.05
2014-06-16 300198.SZ 2014-06-16 -1 -1 -1 1 1.01 -3.84 1.28
2014-06-30 002093.SZ 2014-06-30 -1 -1 -1 5 3.30 -3.93 0.00
2014-07-02 300288.SZ 2014-07-02 1 1 1 228 20.97 -4.61 4.82
2014-07-04 002070.SZ 2014-07-04 -1 -1 -1 19 7.00 -8.27 0.60
2014-07-07 600568.SH 2014-07-07 -1 1 1 11 3.71 -5.23 0.00
2014-07-11 002629.SZ 2014-07-11 1 -1 -1 60 14.15 -5.76 3.86
2014-07-16 000868.SZ 2014-07-16 -1 -1 -1 1 0.69 -2.19 5.31
2014-07-25 600319.SH 2014-07-25 -1 1 1 1 1.57 -1.83 3.54
2014-07-28 600157.SH 2014-07-28 1 1 1 1 1.48 -2.11 4.34
2014-08-07 600556.SH 2014-08-07 -1 -1 -1 6 4.43 -5.58 0.00
2014-08-11 600222.SH 2014-08-11 -1 -1 -1 95 4.91 -5.48 0.00
2014-08-14 300208.SZ 2014-08-14 -1 1 1 3 2.98 -2.43 3.87
2014-08-18 002125.SZ 2014-08-18 1 -1 1 1 0.73 -1.55 5.67
2014-08-21 000922.SZ 2014-08-21 1 1 1 211 20.19 -12.07 0.00
2014-08-22 300356.SZ 2014-08-22 1 1 1 1 1.64 -2.07 12.18
2014-09-02 600691.SH 2014-09-02 1 1 1 6 1.92 -5.09 0.00
... ... ... ... ... ... ... ... ... ...
2018-12-19 002845.SZ 2018-12-19 1 -1 1 2 1.35 -0.82 5.63
2018-12-25 000531.SZ 2018-12-25 -1 -1 -1 1 0.26 -1.28 0.00
2018-12-26 002927.SZ 2018-12-26 -1 -1 -1 2 5.88 -2.72 11.84
2018-12-27 300265.SZ 2018-12-27 -1 -1 1 3 1.06 -4.61 1.83
2018-12-28 601619.SH 2018-12-28 -1 -1 -1 11 1.55 -2.54 3.17
2019-01-04 300125.SZ 2019-01-04 1 1 1 6 1.15 -2.67 0.20
2019-01-07 600571.SH 2019-01-07 -1 -1 -1 1 1.40 -1.16 0.50
2019-01-08 002130.SZ 2019-01-08 -1 -1 -1 1 1.08 -1.43 2.39
2019-01-09 600452.SH 2019-01-09 1 1 1 27 0.57 -3.31 0.00
2019-01-10 300328.SZ 2019-01-10 -1 -1 -1 9 2.36 -4.15 2.79
2019-01-11 300096.SZ 2019-01-11 -1 -1 -1 7 0.71 -1.74 1.60
2019-01-14 000018.SZ 2019-01-14 -1 -1 -1 6 3.54 -6.14 0.64
2019-01-16 002063.SZ 2019-01-16 1 1 1 2 1.33 -3.46 0.57
2019-01-18 600589.SH 2019-01-18 1 -1 -1 1 0.94 -0.21 0.56
2019-01-21 300693.SZ 2019-01-21 -1 1 1 1 3.01 -1.63 3.94
2019-01-22 300503.SZ 2019-01-22 -1 -1 -1 1 1.47 -1.62 1.12
2019-01-24 601811.SH 2019-01-24 1 -1 -1 1 1.78 -2.43 7.48
2019-01-25 600721.SH 2019-01-25 1 -1 -1 175 3.81 -4.69 0.48
2019-01-28 300096.SZ 2019-01-28 -1 -1 -1 1 2.47 -4.14 0.78
2019-01-31 300250.SZ 2019-01-31 1 1 1 15 1.20 -1.48 4.80
2019-02-01 002011.SZ 2019-02-01 -1 -1 -1 1 1.27 -3.88 1.30
2019-02-11 000802.SZ 2019-02-11 -1 -1 -1 2 3.23 -2.62 2.11
2019-02-12 600318.SH 2019-02-12 1 -1 -1 1 0.47 -0.70 0.47
2019-02-13 300566.SZ 2019-02-13 1 1 1 2 2.42 -2.32 0.00
2019-02-14 300263.SZ 2019-02-14 -1 1 1 91 10.91 -9.18 0.70
2019-02-18 601208.SH 2019-02-18 -1 -1 -1 1 0.91 -0.81 9.70
2019-02-19 300466.SZ 2019-02-19 -1 -1 -1 1 0.81 -0.30 2.03
2019-02-20 600095.SH 2019-02-20 -1 -1 -1 1 1.69 -0.43 0.91
2019-02-21 002435.SZ 2019-02-21 -1 1 -1 2 2.42 -4.24 1.20
2019-02-22 600572.SH 2019-02-22 1 1 1 5 2.10 -3.77 0.00

508 rows × 9 columns

In [41]:
updt = labeldt[labeldt['1日收盘价']==1]
downdt =  labeldt[labeldt['1日收盘价']==-1]
label = ['time','Change','drop range','limit Change']
from mpl_toolkits.mplot3d import Axes3D
xsup1 = updt[label[0]]
xsup2 = updt[label[1]]
xsup3 = updt[label[2]]
xsdown1 = downdt[label[0]]
xsdown2 = downdt[label[1]]
xsdown3 = downdt[label[2]]
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(xsup1,xsup2,xsup3,c='tomato')
ax.scatter(xsdown1,xsdown2,xsdown3,c='g')
ax.set_xlabel(label[0],fontsize=12)
ax.set_ylabel(label[1],fontsize=12)
ax.set_zlabel(label[2],fontsize=12)
ax.set_title('one day Data space 3D ',fontsize=20)
plt.show()

for l in label:
    fig = plt.figure()
    axes = fig.add_axes([0.1, 0.1, 1, 0.618]) 
    x1_list=list(updt[l])
    y=np.array(x1_list)
    x=np.array(range(0,len(x1_list)))
    axes.scatter(x,y,c='tomato')

    x1_list=list(downdt[l])
    y=np.array(x1_list)
    x=np.array(range(0,len(x1_list)))
    axes.scatter(x,y,c='g')
    axes.set_ylabel('value',fontsize=15)
    axes.set_title(l,fontsize=20)
In [42]:
labeldt
label = ['time','Change','drop range','limit Change']

train = labeldt[:300]
test = labeldt[-200:]
X=train[label]
Y=train['1日收盘价']
X_test=test[label]
Y_test=test['1日收盘价']

from sklearn import svm
model = svm.SVC(C=1, kernel='rbf', gamma=0.5, decision_function_shape='ovo')

model.fit(X, Y)
print('训练时,预测成功率 {}'.format(round(np.mean(model.predict(X)==Y),2)))
print('测试时,预测成功率 {}'.format(round(np.mean(model.predict(X_test)==Y_test),2)))
训练时,预测成功率 0.88
测试时,预测成功率 0.51
In [43]:
dataclosedf = datadf#[['stock','date','1日收盘价','2日收盘价','3日收盘价']]
dataclosedf = dataclosedf.sort_values(by='1日收盘价',ascending=False)


tradeday = list(get_trade_days(startdate, '20200202', count=None).strftime('%Y-%m-%d'))

timelist = []
trlist= []
lplist =[]
q_trlist = []
for d in tradeday:
    time = 0
    tr = 0
    lp = 0
    q_tr = 0
    if d in list(labeldt['date']):
        stock = labeldt['stock'][d]
        day = tradeday[tradeday.index(d)+1]
        stockdata = get_price(stock,None,day,'1m',['close','high','low','open','turnover_rate'],True,'pre',bar_count=241,is_panel=0)
        
        pc = stockdata.iloc[0].close
        highlimit = round(pc*1.1,2)
        
        stockdata = stockdata.iloc[-240:]
        
        for m in list(range(0,240)):
            
            rc = stockdata.iloc[m].close
            h = stockdata.iloc[(m+1)].high
            
            if rc == highlimit:
                q_tr +=stockdata.iloc[m].turnover_rate
                
            if rc<highlimit:
                time += 1
                tr +=stockdata.iloc[m].turnover_rate
                lp = min(stockdata.iloc[m].low/highlimit-1,lp)
            
            if rc<highlimit and h == highlimit:
                break
        if time>0:
            timelist.append(time)
            trlist.append(round(tr,2))
            lplist.append(round(lp*100,2))
            q_trlist.append(round(q_tr,2))
dataclosedf['time'] = timelist
dataclosedf['Change'] = trlist
dataclosedf['drop range'] = lplist
dataclosedf['limit Change'] = q_trlist
dataclosedf
Out[43]:
stock date buyprice 当日收盘价 1日收盘价 1日开盘价 1日最高价 1日最低价 2日收盘价 2日开盘价 2日最高价 2日最低价 3日收盘价 3日开盘价 3日最高价 3日最低价 time Change drop range limit Change
2014-12-24 002239.SZ 2014-12-24 2.34 2.34 0.106838 0.008547 0.106838 0.000000 0.059829 0.158120 0.179487 0.055556 -0.008547 0.034188 0.034188 -0.025641 2 0.23 -2.27 0.00
2015-01-12 002738.SZ 2015-01-12 13.85 13.85 0.102527 0.010108 0.102527 -0.031047 0.215162 0.156679 0.215162 0.133574 0.338628 0.257762 0.338628 0.246209 209 10.74 -7.14 0.00
2015-07-13 002685.SZ 2015-07-13 10.18 10.18 0.101179 0.044204 0.101179 0.015717 -0.009823 0.093320 0.098232 -0.009823 -0.008841 -0.009823 0.040275 -0.110020 1 3.99 -1.19 9.58
2018-11-28 002288.SZ 2018-11-28 4.26 4.26 0.100939 -0.056338 0.100939 -0.056338 0.211268 0.131455 0.211268 0.068075 0.333333 0.291080 0.333333 0.272300 1 0.79 -0.60 1.95
2015-07-30 300368.SZ 2015-07-30 9.81 9.81 0.100917 -0.002039 0.100917 -0.040775 0.211009 0.113150 0.211009 0.076453 0.332314 0.332314 0.332314 0.298675 1 1.16 -1.14 15.01
2018-08-08 600470.SH 2018-08-08 4.66 4.66 0.100858 -0.034335 0.100858 -0.036481 -0.006438 0.072961 0.094421 -0.008584 -0.062232 -0.051502 -0.040773 -0.081545 1 1.42 -1.99 2.48
2015-07-10 002446.SZ 2015-07-10 15.27 15.27 0.100851 0.100851 0.100851 0.100851 0.211526 0.211526 0.211526 0.138179 0.089064 0.151277 0.174198 0.089064 25 8.88 -7.78 1.11
2014-07-28 600157.SH 2014-07-28 2.48 2.48 0.100806 -0.004032 0.100806 -0.012097 0.213710 0.153226 0.213710 0.137097 0.266129 0.262097 0.338710 0.241935 1 0.68 -4.82 0.43
2018-11-01 000633.SZ 2018-11-01 5.06 5.06 0.100791 0.100791 0.100791 0.081028 0.128458 0.106719 0.183794 0.096838 0.015810 0.051383 0.065217 0.015810 2 4.56 -2.59 3.06
2015-04-02 002006.SZ 2015-04-02 11.61 11.61 0.100775 0.088717 0.100775 0.063738 0.136090 0.193798 0.193798 0.074074 0.090439 0.114556 0.114556 0.055986 1 0.17 -0.81 0.64
2014-08-22 300356.SZ 2014-08-22 9.03 9.03 0.100775 0.014396 0.100775 0.014396 0.075305 0.071982 0.087486 0.047619 0.160576 0.107420 0.182724 0.091916 2 2.72 -1.87 0.88
2018-08-07 300392.SZ 2018-08-07 6.75 6.75 0.100741 0.044444 0.100741 0.038519 0.210370 0.210370 0.210370 0.133333 0.331852 0.331852 0.331852 0.331852 1 1.00 -2.28 0.00
2017-03-15 002850.SZ 2017-03-15 84.81 84.81 0.100696 0.047046 0.100696 0.031364 0.054946 0.101167 0.141729 0.047046 0.039382 0.031246 0.053060 0.000000 1 1.00 -1.17 2.63
2015-06-01 300149.SZ 2015-06-01 22.55 22.55 0.100665 0.100665 0.100665 0.053659 0.211530 0.211086 0.211530 0.189357 0.101109 0.191131 0.191131 0.089579 3 2.15 -2.86 1.05
2015-10-09 002684.SZ 2015-10-09 14.31 14.31 0.100629 0.022362 0.100629 0.022362 0.139064 0.116003 0.184486 0.079665 0.150943 0.127184 0.206848 0.097834 1 1.01 -3.84 1.28
2015-03-16 600207.SH 2015-03-16 7.16 7.16 0.100559 0.005587 0.100559 -0.005587 0.150838 0.166201 0.210894 0.117318 0.113128 0.157821 0.157821 0.079609 5 3.30 -3.93 0.00
2018-11-15 002708.SZ 2018-11-15 8.95 8.95 0.100559 0.032402 0.100559 0.011173 0.211173 0.211173 0.211173 0.211173 0.331844 0.229050 0.331844 0.186592 228 20.97 -4.61 4.82
2018-03-16 002264.SZ 2018-03-16 8.95 8.95 0.100559 0.049162 0.100559 0.039106 0.128492 0.098324 0.173184 0.061453 0.241341 0.092737 0.241341 0.092737 19 7.00 -8.27 0.60
2015-04-15 002044.SZ 2015-04-15 12.73 12.73 0.100550 0.100550 0.100550 0.076198 0.044776 0.211312 0.211312 0.044776 0.147683 0.080911 0.149254 0.062058 11 3.71 -5.23 0.00
2014-09-12 300161.SZ 2014-09-12 14.82 14.82 0.100540 0.008772 0.100540 0.000000 0.089744 0.102564 0.176113 0.089069 0.057355 0.075574 0.075574 0.033738 60 14.15 -5.76 3.86
2016-11-01 300044.SZ 2016-11-01 9.55 9.55 0.100524 0.021990 0.100524 0.008377 0.067016 0.158115 0.211518 0.056545 0.086911 0.071204 0.106806 0.053403 1 0.69 -2.19 5.31
2018-05-21 002828.SZ 2018-05-21 17.92 17.92 0.100446 0.046875 0.100446 0.019531 0.210937 0.210937 0.210937 0.155692 NaN NaN NaN NaN 1 1.57 -1.83 3.54
2015-08-26 000628.SZ 2015-08-26 11.45 11.45 0.100437 0.082969 0.100437 0.061135 0.210480 0.210480 0.210480 0.210480 0.089083 0.222707 0.222707 0.089083 1 1.48 -2.11 4.34
2014-09-19 000852.SZ 2014-09-19 16.13 16.13 0.100434 0.003100 0.100434 0.000620 0.115933 0.075635 0.141971 0.058896 0.115313 0.112213 0.135152 0.088655 6 4.43 -5.58 0.00
2015-10-27 600207.SH 2015-10-27 9.56 9.56 0.100418 0.047071 0.100418 0.035565 0.210251 0.210251 0.210251 0.155858 0.331590 0.315900 0.331590 0.284519 95 4.91 -5.48 0.00
2017-08-29 603042.SH 2017-08-29 33.56 33.56 0.100417 -0.021454 0.100417 -0.027414 0.076281 0.031585 0.103397 0.008641 0.030691 0.056317 0.093564 0.027712 3 2.98 -2.43 3.87
2015-02-04 000875.SZ 2015-02-04 5.28 5.28 0.100379 0.041667 0.100379 0.009470 0.090909 0.115530 0.181818 0.062500 0.009470 0.045455 0.077652 -0.017045 1 0.73 -1.55 5.67
2017-03-13 601212.SH 2017-03-13 10.66 10.66 0.100375 -0.016886 0.100375 -0.031895 0.211069 0.158537 0.211069 0.137899 0.332083 0.280488 0.332083 0.267355 211 20.19 -12.07 0.00
2015-12-02 000668.SZ 2015-12-02 26.61 26.61 0.100338 0.050733 0.100338 0.033070 0.066892 0.104848 0.162345 0.062383 0.071778 0.069523 0.086809 0.044344 1 1.64 -2.07 12.18
2014-02-28 600680.SH 2014-02-28 13.26 13.26 0.100302 0.045249 0.100302 0.045249 0.210407 0.118401 0.210407 0.105581 0.331825 0.272247 0.331825 0.272247 6 1.92 -5.09 0.00
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2018-11-27 000948.SZ 2018-11-27 11.50 10.80 -0.114783 -0.052174 -0.040870 -0.133043 -0.160870 -0.119130 -0.113913 -0.161739 -0.149565 -0.160870 -0.140870 -0.177391 2 1.35 -0.82 5.63
2016-03-08 600882.SH 2016-03-08 9.94 9.57 -0.115694 -0.132797 -0.099598 -0.133803 -0.170020 -0.112676 -0.105634 -0.173038 -0.195171 -0.193159 -0.175050 -0.205231 1 0.26 -1.28 0.00
2017-10-13 300062.SZ 2017-10-13 11.30 10.72 -0.116814 -0.070796 -0.070796 -0.132743 -0.122124 -0.123894 -0.112389 -0.127434 -0.132743 -0.123894 -0.107080 -0.136283 2 5.88 -2.72 11.84
2015-02-03 000586.SZ 2015-02-03 12.36 11.65 -0.117314 -0.134304 -0.073625 -0.140777 -0.149676 -0.114078 -0.107605 -0.149676 -0.064725 -0.150485 -0.064725 -0.156958 3 1.06 -4.61 1.83
2018-12-27 300265.SZ 2018-12-27 9.12 8.87 -0.118421 -0.088816 -0.029605 -0.125000 -0.072368 -0.130482 -0.033991 -0.150219 0.020833 -0.088816 0.020833 -0.092105 11 1.55 -2.54 3.17
2017-03-30 002040.SZ 2017-03-30 27.13 26.46 -0.122374 -0.077774 -0.066716 -0.122374 -0.159602 -0.172503 -0.140066 -0.196093 -0.136380 -0.163656 -0.092886 -0.164394 6 1.15 -2.67 0.20
2015-05-14 002625.SZ 2015-05-14 56.28 51.36 -0.123490 -0.123490 -0.060768 -0.171109 -0.044954 -0.139481 -0.038913 -0.163113 -0.101812 -0.038913 -0.038735 -0.124378 1 1.40 -1.16 0.50
2015-10-23 300081.SZ 2015-10-23 16.35 15.89 -0.125994 -0.078287 -0.056881 -0.125994 -0.099694 -0.173089 -0.083792 -0.176758 -0.185321 -0.124771 -0.116820 -0.188991 1 1.08 -1.43 2.39
2018-06-15 002423.SZ 2018-06-15 14.62 14.08 -0.133379 -0.110807 -0.110807 -0.133379 -0.112859 -0.220246 -0.056772 -0.220246 -0.178523 -0.158687 -0.083447 -0.189466 27 0.57 -3.31 0.00
2015-07-27 600728.SH 2015-07-27 13.96 13.35 -0.135387 -0.131805 -0.016476 -0.139685 -0.049427 -0.105301 -0.048711 -0.174069 -0.114613 -0.065186 -0.037966 -0.123209 9 2.36 -4.15 2.79
2018-07-27 600186.SH 2018-07-27 2.49 2.34 -0.136546 -0.092369 -0.048193 -0.152610 -0.148594 -0.128514 -0.116466 -0.156627 -0.136546 -0.144578 -0.116466 -0.156627 7 0.71 -1.74 1.60
2018-07-03 002211.SZ 2018-07-03 7.40 7.02 -0.141892 -0.091892 -0.064865 -0.145946 -0.201351 -0.156757 -0.133784 -0.221622 -0.229730 -0.216216 -0.204054 -0.258108 6 3.54 -6.14 0.64
2017-04-14 000616.SZ 2017-04-14 6.12 5.78 -0.145425 -0.101307 -0.084967 -0.150327 -0.145425 -0.153595 -0.111111 -0.156863 -0.156863 -0.156863 -0.140523 -0.181373 2 1.33 -3.46 0.57
2015-04-27 300188.SZ 2015-04-27 17.96 16.97 -0.150334 -0.084076 -0.055122 -0.150334 NaN NaN NaN NaN -0.149220 -0.116927 -0.097439 -0.149777 1 0.94 -0.21 0.56
2018-12-06 300006.SZ 2018-12-06 4.92 4.42 -0.154472 -0.097561 -0.085366 -0.168699 -0.203252 -0.172764 -0.166667 -0.203252 -0.199187 -0.201220 -0.191057 -0.203252 1 3.01 -1.63 3.94
2015-10-30 000019.SZ 2015-10-30 9.76 9.16 -0.154713 -0.154713 -0.081967 -0.154713 -0.211066 -0.172131 -0.143443 -0.222336 -0.163934 -0.205943 -0.148566 -0.214139 1 1.47 -1.62 1.12
2018-11-29 600936.SH 2018-11-29 5.10 4.77 -0.154902 -0.109804 -0.107843 -0.158824 -0.117647 -0.158824 -0.090196 -0.162745 -0.133333 -0.133333 -0.129412 -0.150980 1 1.78 -2.43 7.48
2018-04-11 300705.SZ 2018-04-11 28.85 26.79 -0.164298 -0.071404 -0.049567 -0.164298 -0.224263 -0.198614 -0.164298 -0.235355 -0.236742 -0.250260 -0.228076 -0.253380 175 3.81 -4.69 0.48
2018-10-26 603999.SH 2018-10-26 5.75 5.25 -0.177391 -0.142609 -0.142609 -0.177391 -0.160000 -0.184348 -0.137391 -0.205217 -0.161739 -0.172174 -0.149565 -0.180870 1 2.47 -4.14 0.78
2014-12-22 600169.SH 2014-12-22 8.81 7.95 -0.181612 -0.113507 -0.091941 -0.187287 -0.205448 -0.205448 -0.185017 -0.225880 -0.125993 -0.187287 -0.125993 -0.197503 15 1.20 -1.48 4.80
2018-10-25 002451.SZ 2018-10-25 8.51 7.62 -0.183314 -0.177438 -0.121034 -0.193890 -0.212691 -0.195065 -0.182139 -0.229142 -0.203290 -0.222092 -0.171563 -0.236193 1 1.27 -3.88 1.30
2019-01-28 300096.SZ 2019-01-28 14.72 12.26 -0.250679 -0.171196 -0.151495 -0.250679 -0.310462 -0.275815 -0.247962 -0.323370 -0.338995 -0.307745 -0.303668 -0.357337 2 3.23 -2.62 2.11
2016-02-17 600234.SH 2016-02-17 22.85 22.22 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 0.47 -0.70 0.47
2017-04-11 002774.SZ 2017-04-11 22.72 22.72 NaN NaN NaN NaN NaN NaN NaN NaN -0.100352 -0.078785 -0.034771 -0.100352 2 2.42 -2.32 0.00
2014-02-12 000971.SZ 2014-02-12 3.64 3.64 NaN NaN NaN NaN NaN NaN NaN NaN -0.027473 -0.098901 -0.002747 -0.098901 91 10.91 -9.18 0.70
2015-03-24 300310.SZ 2015-03-24 9.98 9.98 NaN NaN NaN NaN -0.071142 -0.046092 -0.039078 -0.100200 -0.044088 -0.090180 -0.002004 -0.097194 1 0.91 -0.81 9.70
2018-01-10 600652.SH 2018-01-10 8.94 8.94 NaN NaN NaN NaN NaN NaN NaN NaN -0.083893 -0.051454 -0.020134 -0.090604 1 0.81 -0.30 2.03
2016-03-03 000982.SZ 2016-03-03 8.22 8.22 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 1.69 -0.43 0.91
2017-04-12 000605.SZ 2017-04-12 25.75 25.75 NaN NaN NaN NaN NaN NaN NaN NaN -0.100194 -0.058252 -0.016699 -0.100194 2 2.42 -4.24 1.20
2018-05-14 002930.SZ 2018-05-14 41.53 41.53 NaN NaN NaN NaN NaN NaN NaN NaN 0.099928 0.059475 0.099928 0.037804 5 2.10 -3.77 0.00

508 rows × 20 columns

In [44]:
xdf = dataclosedf.dropna(axis=0)
In [45]:
xdf = xdf.sort_values(by='date')
xlabel = ['time','Change','drop range','limit Change']
ylabel = '3日收盘价'
xdf[ylabel] =xdf[ylabel].apply(lambda x:1 if x>0.02 else -1)

train = xdf[:300]
test = xdf[-200:]

X=train[xlabel]
Y=train[ylabel]

X_test=test[xlabel]
Y_test=test[ylabel]

from sklearn import svm
model = svm.SVC(C=5, kernel='rbf', gamma=0.5)

model.fit(X, Y)
print('训练时,预测成功率 {}'.format(round(np.mean(model.predict(X)==Y),2)))
print('测试时,预测成功率 {}'.format(round(np.mean(model.predict(X_test)==Y_test),2)))
len(list(test[test[ylabel]==1].index)),len(list(test[test[ylabel]==-1].index))
训练时,预测成功率 0.91
测试时,预测成功率 0.66
Out[45]:
(52, 148)
In [ ]: